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Radar echoes measured on a signal-to-noise ratio scale that are greater than a threshold are shown to 

follow a Pareto  probability distribution. The decay parameter of this distribution is directly related to the 

spreading loss mechanism coupling the radar transmitter to the target. The problem is motivated as an 

example of a selection effect in Bayesian probability theory. Numerical examples are presented using 

synthetic data and data from the WiPPR radar system.

Selection effects
Sometimes the data from an instrument is curated by the recording process in such a fashion that the 

full range of the data is not available. This could be a property of the instrument. It could also arise 

from the necessity to to record only those data values with sufficiently high signal-to-noise ratio in 

order to guarantee data integrity. These are both examples of selection effects. David MacKay in his 

book Information Theory, Inference and Learning Algorithms posed the problem by considering a ques-
tion from an old Cambridge exam:

"Unstable particles are emitted from a source and decay at a distance  x, a real number that has an 

exponential probability distribution with characteristic  length λ. Decay events can be observed only 

if they occur in a window extending from x = 1 cm to x = 20 cm. N decays are observed at locations 

{x1, x2…xN}. What is λ?"

x

x=1 x=20

The question actually is somewhat more precisely, what is a reasonable way of estimating λ. Reason-
ableness in this case leads to a Bayesian analysis. This requires finding an expression for the likelihood 

of the data given a knowledge of the unknown parameter  λ.

The likelihood of measuring a data value x given λ and the effect of measuring data only in the range 

1 < x < 20 is

L(x λ) =
1
Z(λ)

1
λ
exp(-x /λ)

where



Z(λ) = ∫1
20 1

λ
exp(-x /λ)λ = exp(-x) - exp(-x /20) .

Note that λ-1 exp(-x /λ) is just the probability density function of the exponential distribution that 
generates  the data. The likelihood of observing the data values {x1, x2…xN} is

L(x1 x2…xN λ) =
1

(Z(λ) λ)N
exp {-(x1 + x2…xN) /λ} =

1
(Z(λ) λ)N

exp(-Nx /λ)

where x is the mean of the data sample. Bayes theorem tells us that if the probability density function 

f (λ) represents our prior knowledge about the parameter  λ, then the corresponding posterior probabil-
ity density function is

P(λ x1 x2…xN) ∝
1

(Z(λ) λ)N
exp(-Nx /λ) f (λ).

We can make this much clearer by considering a numerical example. Suppose we are sampling from an 

exponential distribution with mean λ = 7.

Let's begin by generating some samples :

In[ ]:= SeedRandom[1234]; λtrue = 17.0; nsample = 30;
xAll = RandomVariate[ExponentialDistribution[1 / λtrue], {nsample}]

Out[ ]=

{2.23881, 11.0527, 41.6638, 16.5426, 75.6996, 1.28375, 10.3573,
12.5012, 23.8862, 4.66775, 0.257053, 25.9701, 13.2373, 2.08205,
9.14777, 22.6424, 1.42562, 14.593, 0.21745, 9.02914, 42.3516, 4.00266,
6.15701, 4.84835, 15.5112, 7.78079, 3.2828, 38.2276, 12.7898, 19.9101}

Now we define a selection range of the instrument and choose only data that lie within that range. For 
illustrative  purposes we choose slightly different values from the David MacKay example:

In[ ]:= xmin = 1; xmax = 30;
x = Select[xAll, xmin < # < xmax &]

Out[ ]=

{2.23881, 11.0527, 16.5426, 1.28375, 10.3573, 12.5012, 23.8862, 4.66775,
25.9701, 13.2373, 2.08205, 9.14777, 22.6424, 1.42562, 14.593, 9.02914,
4.00266, 6.15701, 4.84835, 15.5112, 7.78079, 3.2828, 12.7898, 19.9101}

The likelihood of the first n samples of the data is:

In[ ]:= likelihood[λ_, n_, xmin_, xmax_] :=

1

((Exp[-xmin / λ] - Exp[-xmax / λ]) λ)
n
Exp-

i=1

n

x〚i〛 / λ

A characteristic  of the likelihood functions that arise in Bayesian probability theory is that they often 

lead to numerical underflow. In order to avoid this difficulty we work on a log scale instead and employ 

the log-max trick in the numerical computations that follow. This means we compute the log likeli-
hood, subtract the max log likelihood and then exponentiate to obtain a normalized likelihood without 
underflow problems. If we need to make an evidence calculation (which we do not here) the maximum 

likelihood value can be added to the log evidence at the end of the computation.

The log of the likelihood function is:
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In[ ]:= logLikelihood[λ_, n_, xmin_, xmax_] :=

-n * Log[(Exp[-xmin / λ] - Exp[-xmax / λ]) λ] - 

i=1

n

x〚i〛 / λ

The normalized likelihood of the data looks like the following plot. In doing this we also define a range 

for the unknown parameter  λ as well as a sampling increment:

In[ ]:= λmin = 0.25; λmax = 100.0; dλ = 0.025;
loglikely = Table[logLikelihood[λ, Length[x], xmin, xmax], {λ, λmin, λmax, dλ}];
loglikely = loglikely - Max[loglikely];
likely = Exp[loglikely];

ListLogLinearPlotlikely, 

Out[ ]=
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We assume a Jeffrey prior on λ on the range λmin < λ < λmax of the form f (λ) ∝ λ-1. We do not need to 

express the constant  of proportionality since it normalizes out in the numerical computation.

The prior and the posterior are plotted in the following:
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In[ ]:= dλ = 0.025;

prior = Tableλ-1, {λ, λmin, λmax, dλ};

prior = prior / Total[prior];
posterior = prior * likely;
posterior = posterior / Total[posterior];

ListLogLinearPlot{prior, posterior} / dλ, 

Out[ ]=
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The posterior mean is:

In[ ]:= posterior.Table[λ, {λ, λmin, λmax, dλ}]
Out[ ]=

19.8766

As sample size increases the posterior probability density function becomes more tightly centered on 

λtrue = 17:
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In[ ]:= nchoice = {1, 2, 8, 16, 20, 24};
posteriors = Table[

likelyn = Table[logLikelihood[λ, n, xmin, xmax], {λ, λmin, λmax, dλ}];
likelyn = Exp[likelyn - Max[likelyn]];
posterior = prior * likelyn;
posterior = posterior / Total[posterior];
posterior, {n, nchoice}];

ListLogLinearPlotposteriors / dλ, 

Out[ ]=
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If we did not include selection effects then the log likelihood of the data would be:

In[ ]:= logLikelihoodNS[λ_, n_, xmin_, xmax_] := -n * Log[λ] - 

i=1

n

x〚i〛 / λ;

The following plot compares the posteriors computed with and without selection effects treated. The 

location of λtrue is indicated by the vertical dashed line:
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In[ ]:= loglikelyNS = Table[logLikelihoodNS[λ, Length[x], xmin, xmax], {λ, λmin, λmax, dλ}];
loglikelyNS = loglikelyNS - Max[loglikelyNS];
likelyNS = Exp[loglikelyNS];
posteriorNS = likelyNS * prior;
posteriorNS = posteriorNS / Total[posteriorNS];

ListLogLinearPlot{posteriorNS, Last[posteriors]} / dλ, 

Out[ ]=
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In the foregoing analysis we were able to treat selection effects because we were able to write down an 

expression for the probability density function that was generating the observed data. This is not 
always possible or convenient. In the material that follows we present an alternate approach that does 

not require this.

Universal PDF of detected SNR
In the following discussion we derive the universal probability density function for the distribution of 
detected SNR values and show how this probability density function (PDF) can be used to estimate the 

slant range decay rate of radar echoes due to reflection from clear air scatter.  By decay rate we mean 

the way in which radar echoes diminish in power as a function of slant range r. Specifically we consider 
the  case in which the decay as a function of slant range is given by  r-a where a is a constant. The 

approach that we take here is adapted from Wen and Schutz (2012) who were concerned with the 

passive detection of gravitational waves. From the stand point of signal processing, there are strong 

similarities between the passive detection of gravitational waves and the active detection of radar 
echoes. By detected signal to noise ratio (SNR) we refer to radar echoes that are above a threshold that 
is large enough to insure that the echo is produced by reflection from a target and is not just a spike in 

the background noise level.

The SNR of a radar echo can be written in the simplified form

y = F /ra

where the symbol y denotes the SNR of the echo measured on a power scale, F is the figure of merit of 
the radar,  r is the radial distance  (or slant range) to the target and a is the decay rate constant. The 
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cases a = 1, 2 and 4 respectively refer to the passive detection of an advancing cylindrical wave, the 

weather radar equation and the ordinary radar equation.  For this last case Blake (1991)

F = tp
Pt Gt Gr σRCS λ2

(4π)3 kB Tsys

where tp is the radar pulse length, Pt is the transmit power,  Gt is the gain of the transmit antenna, Gr  is 

the gain of the receive antenna, σRCS is the radar cross section of the target, λ is the wavelength of the 

radar carrier frequency, kB is Boltzmann’s  constant  and Tsys is the noise temperature  of the radar.  If yT  

denotes the threshold SNR for the radar,  then the maximum range at which the radar can make a 

detection is

rmax = F1/a yT
1/a

If β denotes the constant  density per unit volume of targets,  then the number of detections produced 

by the radar at the two SNR thresholds yT  and y > yT  is

ND(yT) = βΩbeam F3/a yT
-3/a , ND(y) = βΩbeam F3/a y-3/a

where Ωbeam  is the solid angle subtended by the radar beam. If the radar is omnidirectional and the 

entire hemisphere is illuminated then Ωbeam = 2π . The fraction of targets  that are detected at SNR 

values  y > yT  is the ratio of these two quantities

fraction detected = (yT /y)3/a

If y = yT  then the fraction detected is unity. The cumulative fraction of targets  detected as a function of 
the  SNR value y is

G(y) =
1 - (yT /y)3/a y ≥ yT
0 y < yT

At this point it is convenient to make a change in notation that simplifies the analysis that follows. The 

change that we make is to define

α = 3 /a

As the parameter  a assumes the values 1, 2 and 4 then α becomes 3, 3/2 and 3/4. With this change in 

notation, the cumulative fraction of targets  detected as a function of the SNR value y is

G(y) =
1 - (y /yT)-α y ≥ yT
0 y < yT

The function G(y) is the cumulative probability density function of a Pareto  random variable with 

probability density function g(y)

g(y) = 

y
G(y) =

α yT
α y-α-1 y ≥ yT

0 y < yT

When α = 3, corresponding to the scalar (not power) passive detection of an advancing gravity wave or 
the passive power detection of a cylindrically spreading acoustic wave, then g(y) = 3 yT

3 y-4 for y ≥ yT  and 

zero otherwise.  This is precisely the form obtained by obtained by Wen and Schutz (2012). They refer to 

g(y) as the universal probability density function for the distribution of detected SNR values. The probabil-
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ity density function g(y) does not depend upon the figure of merit F of the radar.  The range dependence 

in the underlying in the underlying radar equation that governs the propagation physics is encoded in 

the parameter  α = 3 /a. The median value of a Pareto  distribution with threshold yT  and decay constant  
α is 21/α yT. This implies that 1/2 of all detections will occur in the SNR range yT ≤ y ≤ 21/α yT. For the case 

α = 3 /2 (weather radar equation with a = 2), 1/2 of detections occur within 10 log10 2
2/3 = 2 dB of the

threshold yT.

Numerical example
In order to perform some interesting simulations we will assume that target range and target reflectiv-
ity are random quantities. Given that β is the number of targets  per unit volume, then the number of 
targets  in the distance  band (r, r + dr) is β(4 /3)π(r + dr)3 - r3 ≈ 4π r2 βdr. This implies that the proba-

bility density and cumulative density of targets  as a function of range are

h(r) = 3 r2

rmax
3 -rmin

3 , H(r) = r3-rmin
3

rmax
3 -rmin

3

where rmin < r < rmax is limiting range of targets.  The range of targets  can be simulated by computing

r = rmin
3 + rmax

3 - rmin
3  u1/3

where u is uniformly distributed on the interval (0, 1). Regarding the distributions of target reflectivity, 
we will assume that these quantities are either uniformly distributed or log uniformly distributed on 

the range (σmin, σmax). This last choice is known as a Jeffreys prior and the probability density function 

is

q(σ) = 1
log(σ/maxσmin)

σ-1, σmin < σ < σmax

and zero otherwise.

The following module generates  synthetic SNR data above the threshold yT. Targets  can be uniformly 

distributed in range or in volume. The target radar cross section can be uniformly distributed on the 

interval (σmin(dB)σmax(dB)) or log log uniform on the interval:
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In[ ]:= MakeDataGWPPR[yT_, targetRCSPDF_, nMonteCarlo_,
σMinDB_, σMaxDB_, rMin_, rMax_, targetAltitudePDF_] :=

ModulePt = 3.5, Gt = 103.7, Gr = 103.7, λ = 0.009, kB = 1.38 * 10-23, Tsys = 300.0,

tp = 190.0 * 10-6, Cr4thPower, σMin, σMax, dataAllSNR, σRCS, r, dataDetectedSNR,

Cr4thPower = tp
Pt * Gt * Gr * λ

2

(4 π)
3 kB * Tsys

;

σMin = 10σMinDB/10.0; σMax = 10σMaxDB/10.0;

dataAllSNR = Table

If[targetRCSPDF  "UniformPDF", σRCS = RandomReal[{σMin, σMax}]];

IftargetRCSPDF  "JeffreysPFD", σRCS = RandomReal[{σMinDB, σMaxDB}];

σRCS = 10σRCS/10
;

If[targetAltitudePDF  "UniformInAltitude", r = RandomReal[{rMin, rMax}]];

IftargetAltitudePDF  "UniformInVolume",

r = rMin3 + rMax3 - rMin3 RandomReal[]1/3;

r, Cr4thPower
σRCS

r4
, {nMonteCarlo};

dataDetectedSNR = Select[dataAllSNR, #〚2〛 > yT &];

dataDetectedSNR;

In[ ]:=

Assume targets  are uniformly distributed in volume

We begin by generating synthetic data assuming either a uniform distribution for target reflectivity or 
log uniform. Target  range is assumed to be uniformly distributed in volume for either case. First we 

look at how detected SNR varies in range:
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In[ ]:= SeedRandom[12349876];
nMonteCarlo = 100000;
targetAltitudePDF = "UniformInVolume";
yT = 100.0; σMinDB = -90.0; σMaxDB = -40.0; rMin = 50; rMax = 2000;
dataUniform = MakeDataGWPPR[yT, "UniformPDF",

nMonteCarlo, σMinDB, σMaxDB, rMin, rMax, targetAltitudePDF];
dataJeffreys = MakeDataGWPPR[yT, "JeffreysPFD",

nMonteCarlo, σMinDB, σMaxDB, rMin, rMax, targetAltitudePDF];

gUniform = ListLogLogPlotdataUniform, ;

gJeffreys = ListLogLogPlotdataJeffreys, ;

GraphicsRow[{gUniform, gJeffreys}]
Out[ ]=
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Since we assumed that echoes fall like r-4 then we would expect that our simulated data would fit a 

Pareto  distribution with parameter  α = 3 /4. For the assumption of the uniform distribution of target 
radar cross section we find:

In[ ]:= dataUniformRCS = Map[Last, dataUniform];
estU = EstimatedDistribution[dataUniformRCS, ParetoDistribution[k, α]]

Out[ ]=

ParetoDistribution[100.003, 0.747054]

The agreement is quite good with yt = 100 and α = 3 /4.

The estimated decay with range is:

In[ ]:= 3 / estU〚2〛
Out[ ]=

4.01577

which is almost exactly 4.

The histogram of the synthetic data compared to the fitted probability density function is:
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In[ ]:= g1 = Histogram{dataUniformRCS}, ;

g2 = PlotPDF[estU, y], {y, 100, 1000}, ;

Show[g2, g1]
Out[ ]=
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For the assumption of the Jeffreys distribution of target radar cross section we find:

In[ ]:= dataJeffreysRCS = Map[Last, dataJeffreys];
estJ = EstimatedDistribution[dataJeffreysRCS, ParetoDistribution[k, α]]

Out[ ]=

ParetoDistribution[100.665, 0.77536]

Again the agreement between the simulation parameters  and the recovered parameters  is good.

The estimated decay with range is:

In[ ]:= 3 / estJ〚2〛
Out[ ]=

3.86917

which is very nearly 4.

The histogram and fitted probability density function are:
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In[ ]:= g1 = Histogram{dataJeffreysRCS}, ;

g2 = PlotPDF[estJ, y], {y, 100, 1000}, ;

Show[g2, g1]
Out[ ]=
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In[ ]:=

Assume targets  are uniformly distributed in altitude

Now we assume that the targets  are uniformly distributed in altitude. This breaks one of our fundamen-
tal assumptions in the initial model and we cannot analyze the distribution of detected SNR to deter-
mine the rate of range decay.

We begin by computing:
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In[ ]:= SeedRandom[12349876];
nMonteCarlo = 100000;
targetAltitudePDF = "UniformInAltitude";
yT = 100.0; σMinDB = -90.0; σMaxDB = -40.0; rMin = 50; rMax = 2000;
dataUniform = MakeDataGWPPR[yT, "UniformPDF",

nMonteCarlo, σMinDB, σMaxDB, rMin, rMax, targetAltitudePDF];
dataJeffreys = MakeDataGWPPR[yT, "JeffreysPFD",

nMonteCarlo, σMinDB, σMaxDB, rMin, rMax, targetAltitudePDF];

gUniform = ListLogLogPlotdataUniform, ;

gJeffreys = ListLogLogPlotdataJeffreys, ;

GraphicsRow[{gUniform, gJeffreys}]
Out[ ]=
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Since we assumed that echoes fall like r-4 then we would hope that our simulated data would fit a 

Pareto  distribution with parameter  α = 3 /4. For the assumption of the uniform distribution of target 
radar cross section we find:

In[ ]:= dataUniformRCS = Map[Last, dataUniform];
estU = EstimatedDistribution[dataUniformRCS, ParetoDistribution[k, α]]

Out[ ]=

ParetoDistribution[100.084, 0.33312]

The agreement is quite not good with yt = 100 and α = 3 /4.

For the assumption of the Jeffreys distribution of target radar cross section we find:

In[ ]:= dataJeffreysRCS = Map[Last, dataJeffreys];
estJ = EstimatedDistribution[dataJeffreysRCS, ParetoDistribution[k, α]]

Out[ ]=

ParetoDistribution[100.015, 0.382633]

Again the agreement between the simulation parameters  and the recovered parameters  is not good .
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Observation: If targets  are uniformly distributed in volume then the distribution of detected SNR can 

be analyzed (fitted with a Pareto  distribution) to infer the rate of range decay. However if the distribu-
tion of targets  is uniform in altitude then the technique fails.

Application to real data
The following figure shows some WiPPR data recorded at Yuma AZ in 2017. The SNR threshold is 2 dB:

In[ ]:= rangeDecay = TimeSeries Time: 2. to 46.6
Data points: 12 806

;

ListPlotrangeDecay, 

Out[ ]=
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Lets fit a Pareto  distribution:

In[ ]:= data = rangeDecay["Times"];
data = 10data/10;
estdist = EstimatedDistribution[data, ParetoDistribution[k, α]]

Out[ ]=

ParetoDistribution[1.58491, 1.00399]

The histogram and fitted probability density function are:
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In[ ]:= g1 = Histogramdata, {0, 15, 0.4}, ;

g2 = PlotPDF[estdist, y], {y, 0, 15}, ;

Show[g1, g2]
Out[ ]=
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The implied range decay coefficient is a = 3 /α where α is the fitted Pareto  parameter:

In[ ]:= 3 / estdist〚2〛
Out[ ]=

2.98807

The value is almost exactly 3.This  implies 30 log10 r SNR range decay on a decibel scale in the data. This 

is not unreasonable. This suggests that the range decay in the data is mid way between the weather 
radar equation (20 log10 r range decay) and the standard radar equation (40 log10 r range decay). An 

advantage of the technique is that it makes use of all the data and properly accounts for selection 

effects (thresholding).
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Author notes
The figure in the first section was produced with the following code:

SeedRandom[1236];
instrument = {Gray, Rectangle[{-1.2, -2}, {-0.2, 2}], Rectangle[{-1, -1}, {-2, 1}]};

Universal Probability Density Function of Detected SNR.nb     15



data = {PointSize[0.015], Map[Point, Sort[Table[{RandomReal[{1, 20}], 0}, {7}]]]};
ref = {Arrow[{{0.2, -1}, {7, -1}}]}; lbl = Text["x", {8, -1}];
lbl1 = Text["x=1", {2.1, 2}]; lbl2 = Text["x=20", {21.1, 2}];
barrier1 = {Dashing[0.01], Line[{{1, -2}, {1, 2}}]}; barrier2 = {Dashing[0.01], 
Line[{{20, -2}, {20, 2}}]};
Graphics[{instrument, data, lbl, barrier1, barrier2, ref, lbl1, lbl2}, PlotRange -> 
{{-3, 23}, All}]
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