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Two examples of the refinement of a prior probability distribution based upon the requirement of 
minimum information and testable constraints are presented. Information is the probability distance 

between the updated distribution and the prior. Constraints are additional background information not 
incorporated into the initial choice of the prior. They are imposed by the technique of Lagrange 

multipliers. An example of a testable constraint would be that the updated prior have a prescribed mean 

or mean and variance. Information as defined here is just the negative of entropy so the approaches of 
minimum information and maximum entropy are equivalent. If the testable constraint takes the form of 
imposing moments on the prior then a fat tailed prior is turned into a thin tailed update. This may or may 

not be desirable. Minimizing information is a way to refine a prior.  It is not a replacement for Bayes 

theorem.

Introduction
The following discussion is presented within the context  of Bayesian probability theory.  In a typical 
problem of Bayesian inference we seek to determine the posterior probability distribution of some 

parameter  θ in light of some data D that is at our disposal. That is we ask a question about the parame-
ter θ. In order to answer the question we must supply a likelihood function L(D θ) and a prior probabil-
ity distribution π(θ) that describes our knowledge of θ prior to the availability of data. The likelihood 

function is in essence our model of the data given a knowledge of the parameter.  Bayes theorem tells 

us that the posterior probability distribution P(θ D) is

P(θ D) = 1
E ∫π(θ) L(D θ)θ

where the evidence E is

E = ∫π(θ) L(D θ)θ.

No matter how we choose the prior π(θ) it must be the case that

∫π(θ θ = 1

since π(θ) is a probability density function. The foregoing three equations are the complete calculus of 
inference in the presence of uncertainty (Skilling, 2010). The difference between the prior and the 

posterior is the information



H(P π) = ∫P(θ D) log P(θ D)
π(θ)

 θ .

Sometimes we begin with a vague idea as to the nature of the prior and would like to constrain  it with 

some testable background information.  This can be accomplished by minimizing the information 

subject to the constraints.  As an example we might like to impose first and second moments on the 

prior. In this case the quantity that we must minimize is

∫p(θ) log
p(θ)
π(θ)

 θ + λ0 ∫p(θ)θ + λ1 ∫θp(θ)θ + λ2 ∫θ
2 p(θ)θ

where p(θ) is our updated prior and (λ0, λ1, λ2) are Lagrange multipliers that are determined by mini-
mization with respect to θ subject to the constraints

∫p(θ)θ = 1, ∫θp(θ)θ = μ, ∫θ
2 p(θ)θ = μ2 + σ2.

The discrete version of the minimization problem is
∂

∂pj
 ∑i=1

n pi log(pi /πi) + λ0 ∑i=1
n pi + λ1 ∑i=1

n θi pi + λ2 ∑i=1
n θi

2 pi  = 0.

This has solution

pj =πj exp-1 + λ0 + λ1 θj + λ2 θj
2.

This is a Gaussian in θ. Details will be presented later,  but we can already anticipate the final result. If 
π(θ) is not sharply peak then the Gaussian will dominate and we will find the the updated prior is

p(θ) = 1
2π σ

exp - 1
2σ2

(θ - μ)2, -∞ < θ <∞.

If our initial choice for π(θ) was a Cauchy probability density function centered on μ with width σ and 

we impose the constraint  of minimum information and the additional requirements that the first and 

second moments are respectively μ and μ2 + σ2 then the new prior relative to the old prior looks like 

this:

In[ ]:= Plot{PDF[CauchyDistribution[0, 1], θ],

PDF[NormalDistribution[0, 1], θ]}, {θ, -5, 5}, 

Out[ ]=
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In essence the minimum information update has turned a Cauchy distribution into a Gaussian.

Our definition of information is just the negative of what is commonly called the entropy of a probabil-
ity distribution.  That is minimum information and maximum entropy are the same thing.  So imposing 
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the requirement of maximum entropy takes the fat tailed Cauchy distribution and turns it into a thin 

tailed Gaussian. This precludes our prior from providing support for very large or small values of θ. This 

follows from the fact that it is very unlikely to obtain values outside the range (μ - 3σ, μ + 3σ) for a 

Gaussian.

The difference in the tails between is even more visually dramatic when viewed on a log scale:

In[ ]:= LogPlot{PDF[CauchyDistribution[0, 1], θ],

PDF[NormalDistribution[0, 1], θ]}, {θ, -5, 5}, 

Out[ ]=
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An analytic example of the evaluation of the information 

integral
In the following section we define a prior probability distribution and construct a likelihood function.  
From these we use Bayes theorem to find the posterior.  Just to be clear let's review our notation.  The 

unknown parameter  in question is denoted by θ and the data is D.  The prior is π(θ).  The difference 

between this function and 3.14159… will be clear from context.  The posterior is P(θ D) and the 

information is

H(P π) = ∫P(θ D) log P(θ D)
π(θ)

 θ .

The information is a measure of the distance  between the prior and posterior.  As we shall see in our 
example, if the posterior is sharply peaked in comparison to the prior, then the information will be 

large.

Suppose we draw data from a Gaussian distribution with unknown mean θ and known deviation σ. If x 

is a data value then the sampling distribution is

h(x θ) =
1

(2π)1/2 σ
exp - (x-θ)2

2σ2
, -∞ < x <∞.

On initial hypothesis we assume that the unknown parameter  θ is uniformly distributed on the interval 
(θa, θb). The explicit form of our prior probability distribution is
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π(θ) =
1

θb-θa
, θa < θ < θb

and zero otherwise.

The likelihood of obtaining the independent data sample D consisting  of the n values x1 x2…xn is

L(D θ) =∏i=1
n h(xi θ) =

1
(2π)n/2 σn

exp - 1
2σ2

∑i=1
n (xi - θ)2.

If we define the statistics  x and s of the data x1 x2…xn via

n x = ∑i=1
n xi and (n - 1) s2 = ∑i=1

n (x - x)2,

then the likelihood of the data can be written

L( x, s, n θ) =
1

(2π)n/2 σn
exp - 1

2σ2
(n - 1) s2 + n(θ - x)2.

Bayes theorem tells us that the posterior distribution is

P(θ D) = 1
E
π(θ) L( x, s, n θ =

1
μb-μa

1
(2π)n/2 σn

exp - 1
2σ2

(n - 1) s2 exp - 1
2σ2

n(θ - x)2

where the evidence E is

E = ∫μa
μbf (θ) L( x, s, n θ θ =

1
μb-μa

1
(2π)n/2 σn

exp - 1
2σ2

(n - 1) s2 ∫θa
θbexp - 1

2σ2
n(θ - x)2θ.

Dividing by the evidence yields an expression for the posterior in which all factors not dependent upon 

the unknown mean θ cancel out. Namely

P(θ D) = 1
E
f (θ) L( x, s, n θ =

1

∫θa
θbexp -

1

2σ2
nθ-x2 θ

exp - 1
2σ2

n(θ - x)2, θa < θ < θb.

Now if our prior distribution on θ is such that θa < x - 2σ n < θ < x - 2σ n < θb then the limits in 

the normalization integral can be replaced by -∞ and ∞. In this case the posterior is Gaussian dis-

tributed with mean x and standard deviation σ n . That is 

P(θ D) = 1
2π σ n

exp - 1
2σ2

n(θ - x)2, -∞ < θ <∞.

H[P(θ D) π(θ)] = ∫-∞
∞ 1

2π σ n
exp - 1

2σ2
n(θ - x)2 log

1

2π σ n
exp -

1

2σ2
nθ-x2,

1
θb-θa

 θ

This can be expanded to yield

H = ∫-∞
∞ 1

2π σ n
exp - 1

2σ2
n(θ - x)2log θb-θa

2π σ n
-

1
2σ2

n(θ - x)2 θ.

This is equal to

H = log θb-θa

2π σ n
- 1

2π σ n
n
2σ2 ∫-∞

∞ exp - 1
2σ2

n(θ - x)2 (θ - x)2 θ

The last term in the information integral is tedious so we evaluate it using Mathematica.  Surprisingly it 
simplifies to 1 /2:
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In[ ]:= Clear[n, σ, xbar];
n

2 σ
2

1

2 π σ  n

IntegrateExp-
n

2 σ
2
(θ - xbar)2 (θ - xbar)2, {θ, -∞, ∞}, Assumptions  {n > 0, σ > 0}

Out[ ]=

1

2

So the information is

H = log θb-θa

2π σ n
- 1

2
.

To  begin with let us define our prior and posterior:

In[ ]:= Clear[θ, θa, θb, xbar, n, σ];

prior[θ_, θa_, θb_] :=
1

θb - θa

posterior[θ_, xbar_, σ_, n_] :=
n

2 π σ

Exp-
n

2 σ
2
(θ - xbar)2

A numerical computation of the information H is:

In[ ]:= With{n = 200, xbar = 0.0, σ = 1.0, θa = -5.0, θb = 5.0},

NIntegrateposterior[θ, xbar, σ, n] Log
posterior[θ, xbar, σ, n]

prior[θ, θa, θb]
, {θ, θa, θb}

Out[ ]=

3.53281

This agrees with the theoretical computation:

In[ ]:= Log
θb - θa

2 π σ  n
 -

1

2
/. {θa  -5.0, θb  5.0, σ  1, n  200}

Out[ ]=

3.53281

Constrained mean and standard deviation
The prior probability distribution π(θ) for the unknown parameter  θ is assumed to be Cauchy with
center c and width  w.  Specifically π(θ) is

π(θ) =
w/3.14159…
(θ-c)2+w2

Our prior looks like this:
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In[ ]:= center = 3.0; width = 2.0;
θmin = center - 3 width; θmax = center + 3 width; Nθ = 201;

θ = Tableθ, θ, θmin, θmax,
θmax - θmin

Nθ - 1
;

prior = Map
1

π width 1 +
(-center+#)2

width2


&, θ;

prior = prior / Total[prior];

ListPlotprior, Joined  True, 

Out[ ]=
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We minimize the information H(p π) = ∫p(θ) log(p(θ) /π(θ))θ subject to normalization and 

constraints.

The variational equation is

δ∫p(θ) log[p(θ) /π(θ)]θ + λ0 ∫p(θ)θ + λ1 ∫θp(θ)θ + λ2 ∫θ
2 p(θ)θ .

The discrete version of this equation is
∂

∂pj
 ∑i=1

n pi log(pi /πi) + λ0 ∑i=1
n pi + λ1 ∑i=1

n θi pi + λ2 ∑i=1
n θi

2 pi  = 0.

This has solution

pj =πj exp-1 + λ0 + λ1 θj + λ2 θj
2.

If we constrain  the first and second moments of the updated prior distribution p(θ) then we have the 

normalization and constraints

1 = exp[- (1 + λ0)]∑j=1
n πj exp-λ1 θj + λ2 θj

2

μ = exp[- (1 + λ0)]∑j=1
n πj θj exp-λ1 θj + λ2 θj

2

μ2 + σ2 = exp[- (1 + λ0) ∑j=1
n πj θj

2 exp-λ1 θj + λ2 θj
2

The unknown Lagrange multipliers λ1 and λ2 can be found by solving the pair of nonlinear equations

μ =
∑j=1
n πj θj exp-λ1 θj+λ2 θj2

∑j=1
n πj exp-λ1 θj+λ2 θj2
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μ2 + σ2 =
∑j=1
n πj θj

2 exp-λ1 θj+λ2 θj2

∑j=1
n πj exp-λ1 θj+λ2 θj2

In order to compute a numerical solution we define:

In[ ]:= norm[λ1_, λ2_] := Sumprior〚j〛 Exp-λ1 * θ〚j〛 + λ2 * θ〚j〛2, {j, 1, Length[prior]}

moment1[λ1_, λ2_] :=

Sumprior〚j〛 × θ〚j〛 Exp-λ1 * θ〚j〛 + λ2 * θ〚j〛2, {j, 1, Length[prior]}

moment2[λ1_, λ2_] :=

Sumprior〚j〛 θ〚j〛2 Exp-λ1 * θ〚j〛 + λ2 * θ〚j〛2, {j, 1, Length[prior]}

Now we can compare the prior to the updated prior. We begin by finding the Lagrange multipliers:

In[ ]:= μ = 4; σ = 1;
Clear[λ1, λ2];

sol = FindRootμ 
moment1[λ1, λ2]

norm[λ1, λ2]
, μ

2
+ σ

2


moment2[λ1, λ2]

norm[λ1, λ2]
, {{λ1, 0}, {λ2, 0}};

{λ1, λ2} = {λ1, λ2} /. sol
Out[ ]=

{-3.41415, 0.391454}

Once they are found the comparison between prior and updated prior can be made :

In[ ]:= priorUpdate =

Tableprior〚j〛 Exp-λ1 * θ〚j〛 + λ2 * θ〚j〛2, {j, 1, Length[prior]} /. sol;

priorUpdate = priorUpdate / Total[priorUpdate];

ListPlot{prior, priorUpdate}, 

Out[ ]=
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The updated prior p(θ) looks to be very Gaussian .

Check that the mean is 4:

In[ ]:= priorUpdate.θ
Out[ ]=

4.
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And that the standard deviation is 1:

In[ ]:= priorUpdate.(θ - priorUpdate.θ)21/2

Out[ ]=

1.

Constrained mean for positive valued parameter
Minimum information (same as max entropy) refines prior knowledge and provides for an updated 

prior. The information is

H(p π) = ∑i=1
M pi log(pi /πi)

where p is the update and π is prior. Imposing a constraint  on the mean beyond prior knowledge leads 

to minimizing

S = ∑i=1
M pi log(pi /πi) + λ0∑i=1

M pi - 1 + λ1 ∑xi
i=1

M
pi - μ

The unknowns are the pj.  The solution is

pj =πj exp(-λ0) exp-λ1 θj

This is clearly an exponential. To  find the Lagrange multiplier λ1 we must find the root to

μ =

πj θi
i=1

M
exp(-λ1 θi)

πj
i=1

M
exp(-λ1 θi)

where μ is the imposed mean.

The Lagrange multiplier λ0 is found by requiring the posterior to sum to zero.

We begin with a Gaussian prior but an exponential update emerges :
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In[ ]:= m0 = 3.0; s0 = 2; θmin = 0.0; θmax = 10.0; dθ = 0.1;
θ = Table[θ, {θ, θmin, θmax, dθ}]; M = Length[θ];

prior = MapExp-
(# - m0)2

2 s02
 &, θ;

prior = prior / Total[prior];
mtrue = 1.0; Clear[λ1];

sol = FindRootmtrue 
Sum[prior〚j〛 × θ〚j〛 Exp[-λ1 * θ〚j〛], {j, 1, M}]

Sum[prior〚j〛 Exp[-λ1 * θ〚j〛], {j, 1, M}]
, {λ1, 1};

λ1 = λ1 /. sol;
λ0 = Log[Sum[prior〚j〛 Exp[-λ1 * θ〚j〛], {j, 1, M}] ];
posterior = Table[prior〚j〛 Exp[-λ0] Exp[-λ1 * θ〚j〛], {j, 1, M}];

ListPlot{prior, posterior}, 

Out[ ]=
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The updated prior is exponential like.
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