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This document illustrates how various types of uncertainty affect the forecasting of sonar performance in 

naval applications. The first type of uncertainty arises from the fact that we have incomplete knowledge 

regarding key target kinematic parameters such as range, bearing, depth, heading, speed, etc. In general 

key sonar performance metrics such as the sonar probability of detection P(D) are dependent upon each 

of these kinematic parameters. A  second type of uncertainty is caused by the actual oceanographic 

environment in which the sonar operates. At a conceptual level, a sonar makes a mark on a gram or 

display when the voltage in a detector circuit exceeds a threshold. The probabilities with which these 

marks occur are determined by the statistics of the noise and signal that the sonar actually experiences. 

The statistical distribution of the signal and noise fields at the sonar receiver are strongly influenced by a 

nondeterministic component of ocean sound transmission. Numerous examples are presented.
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6.0 Example computations of sonar performance metrics

6.1 Azimuthal independent ocean with spherical spreading propagation

In this section we will consider the case of an azimuthal independent ocean with a flat bottom.  We will 

assume that sound propagation can be computed via simple spherical spreading.  We will consider two 

target scenarios.  In the first scenario, target probability density is uniform in range and bearing out to 

a distance  of 10000 yd.  In the second scenario, target probability density is uniform in range and 

bearing out to a distance  of 20000 yd.  Functionally,  the probability density in either case is described by



P(r) =
r

1

2
rmax
2

,

where rmax = 10000 yd in scenario 1 and rmax = 20000 yd in scenario 2.  The probability density function 

P(r) is often referred to as the prior target range probability density function or the prior range 

distribution.

We will consider an omnidirectional passive sonar employing a matched filter detector with integration  

time T = 1 sec and false alarm rate of pfa = 10^(-6) that operates in an ambient noisefield with spectral 

noise level AN = 80 dB re 1μPa Hz .  The target source level is assumed to be SL = 160 dB re 1μPa.  If r 
denotes distance  from the target to the sonar receiver,  then the signal to noise ratio on an intensity 

scale is 

snr(r) =
T 10

SL

10 r0
2

10
AN

10 r2
,

where r0 is a reference distance  of 1 yd.  The probability of detecting a target at range r is 

P(D r) =Φ 2 snr(r) - zpfa,
where Φ(z) is the cumulative distribution function for a standard normal Gaussian probability distribu-

tion and zpfa is the solution of the equation pfa = 1 -Φzpfa.  For pfa = 10^(-6), zpfa = 4.75342.  A plot of 

P(D r) is shown in figure 6.1.
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Figure 6.1.  Probability of detection for an omni directional passive sonar in a 20 log10(r) environment.  

Source level, ambient noise spectral level, system integration  time and false alarm rate are respectively 

160 dB, 80 dB, 1 sec and 10^(-6).

We will consider 3 measures of sensor performance.  These are the sensor probability of detection P(D), 

the sensor half-sweep width W1/2 and the posterior range probability distribution P (r D).  This last 

quantity is the answer to the question, "What is the probability of target range given a detection?".   It 

can be computed using Bayes theorem.  As discussed in section 2, these quantities are in an azimuthal 

invariant environment defined by the following equations:
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P(D) = 
0

rmax
P(D r )P(r) r = 1

1

2
rmax
2


0

rmax
P(D r ) r  r,

W1/2 = 
0

∞
P(D r) r,

P(r D) =
P(D r)P(r)

∫0∞P(D r)P(r) r = P(D r) r

∫0rmaxP(D r) r  r .
The sensor probability of detection P(D) is strongly dependent upon the prior range distribution P(r) as 

evidenced by the appearance of the rmax term in the denominator of the defining equation for P(D).  

When rmax becomes large, the numerator in this expression approaches a finite value due to the rapid 

decay in P(D r) with range for large r. The numerator becomes infinite and P(D) tends to zero regard-

less of the character of P(D r).   By way of contrast, the sensor half-sweep width W1/2 is totally indepen-

dent of P(r).  The posterior range distribution P(r D) will effectively independent of P(r) provided that 

rmax extends out into the region where sensor performance is poor.

Performance metrics associated with the posterior range distribution P(r D) are the expected detec-

tion range E[r] defined as the mean of the posterior target range distribution:

r = E[r] = 
0

∞
r P(r D) r,

and the expected detection probability pd defined as the expected value of the probability of detection 

P(D r)

pd = E[P(D r)] = 
0

∞
P(D r)P(r D) r.

A plot of the prior target range distribution P(r) and the posterior target range distribution P(r D) are 

shown in figure 6.2  Figure 6.3 shows the posterior range distribution P(r D) for scenarios 1 and 2.  The 

distributions are essentially identical.  So long as rmax is greater than about 8000 yd, the posterior range  

probability density distribution will be insensitive to the choice of rmax.  
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Figure 6.2.  Posterior and prior target range distributions for scenario 1.
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Figure 6.3.  Posterior target range distributions for scenario 1 and 2.  The distributions are nearly 

identical.

Table  6.1 summarizes values of P(D), W1/2, r and pd for scenario 1: rmax = 10000 yd and scenario 2: 

rmax = 20000 yd.  As can be seen from the table, the sensor probability of detection is very sensitive to 

the value of rmax.  As rmax increases, the target  probability density is spread over  a wider area and P(D) 

decreases.  The performance metrics W1/2, r and pd are insensitive to the values of rmax except  for 

specialized circumstances.

Metric Scenario 1 Scenario 2

P(D) 0.104 0.0261

W1/2 3129 yd 3130 yd

r 2393 yd 2422 yd

pd 0.734 0.732

Table  6.1.  Performance metrics for scenario 1 and 2.

In order to further examine the dependence of the performance metrics P(D), W1/2,  P(r D), r and pd on 

the prior target distribution, we will assume that the sensor probability of detection for a target at 

range r is the step function

P(D r) =
p 0 , r0 < r < r1

0, otherwise

where p0 is a constant  between 0 and 1, and let us again assume that the  target prior range distribu-

tion is

P(r) =
r

1

2
rmax
2

,

where rmax > r1.  Then the performance metrics P(D), W1/2,  P(r D), r and pd  can be computed in closed 

form.  The results of these computations are shown in table 6.2.  The sensor probability of detection is 

strongly dependent upon the choice of rmax.  The other performance metrics are independent of rmax 

provided that rmax > r1.

Performance

Metric

Value Dependence on P(r)
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P(D) p0
r1
2-r0

2 rmax2 strong

W1/2 p0(r1 - r0) none

P(r D) r 1
2
r12 - r02 none

r

pd

2

3
r13 - r03r12 - r02

p0

none

none

Table  6.2.  Performance metrics for an analytic scenario.

6.2 Short and long range sonar comparison

We will consider the performance of two sonars.  The first is a short range sonar, perhaps a sonobuoy, 

with detection capabilities out to 2000 yd.  The second sonar is a longer range sonar with detection 

capabilities out to 8000 yd.  We will consider two target distribution scenarios.  In scenario 1 the target 

probability density P(r) is uniformly distributed in range and azimuth out to the maximum effective 

range of the sonar (either 2000 yd or 8000 yd).  Thus in the first scenario, the prior target range distribu-

tion is chosen to match the detection performance of the sonar.  In the second scenario, the target 

probability density is uniformly distributed over a square-shaped region that is 1000 kyd by 1000 kyd 

and the sonar is assumed to be located at the mid point of the  square.  

We will assume that the sensor lateral range P(D r) is given by the analytic function

P(D r) = Exp-4 r2
r0
2
,

where r0 = 2000 yd for sonar 1 and r0 = 8000 yd for sonar 2. A plot of this function is shown in figure 6.6.  

At short ranges, both sonars have probability of detection values near 1, but at longer ranges, sonar 2 is 

clearly superior.  The posterior range distributions P(r D) for scenarios 1 and 2 and sonars 1 and 2 are 

shown in figure 6.7.  Even though the prior range distributions P(r) are very different as evidenced by 

figures 6.4 and 6.5, the posterior range distributions P(r D) are very similar.  

The performance metrics P(D), W1/2,  P(r D), r and pd for the two scenarios are shown in table 6.3.  For 

scenario 1 in which the target prior range distribution is matched to the sonar detection range, we see 

that sonar 1 and sonar 2 have the the same P(D) value of 0.245 even though sonar 2 has 4 times the 

detection range of sonar 1.  This highlights the fact that using P(D) as a performance metric should only 

be done if the goal is present some type of location specific or relative measure of sonar performance.  

If the goal is compare the performance of different sonars, then different performance metrics should 

be used.  As we saw in section 6.2,  the probability of detection P(D) is very sensitive to the target prior

range distribution.  The other performance metrics are not sensitive to the target prior range 

distribution.
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Figure 6.4.  Prior target range distributions P(r) for scenario 1.
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Figure 6.5.  Prior target range distributions P(r) for scenario 2.
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Figure 6.6.  Sensor lateral range P(D r) for sonar 1 and sonar 2.
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Figure 6.7.  Posterior range distributions P(r D) for scenario 1 and scenario 2.  Scenario 1 is repre-

sented by the smooth curve in blue.  Sonar type 1 and 2 is indicated in the figure.

Performance

Metric

Scenario 1

Sonar 1

Scenario 1

Sonar 2

Scenario 2

Sonar 1

Scenario 2

Sonar 2

P(D) 0.245 0.245 3.31×10-6 4.92×10-5

W1/2 0.882 kyd 3.53 kyd 0.882 kyd 3.53 kyd

r 0.861 kyd 3.44 kyd 1.04 kyd 3.69 kyd

pd 0.509 0.509 0.401 0.478

Table  6.3.  Performance metrics for two prior target range distributions and two sonar types.  In sce-

nario 1 the target prior range distribution is matched to the characteristics  of the sonar.  In scenario 2 

the target probability density is spread out over a very wide area.

6.3 Convergence zone sonar

In the examples we have considered so far,  sonar performance as measured by the lateral range curve 

P(D r) has been assumed to monotonically decrease with range r.  This is not always the case.  In 

certain deep water ocean environments with favorable sound velocity variation with depth, sonars can 

achieve detections at ranges out to 50 kyd via convergence  zone (CZ) propagation.  In order to investi-

gate this phenomena, we will assume that the sensor lateral range P(D r) can be mathematically 

represented by the functional form,

P(D r) = exp- r

wd

2 + 0.8 exp- r - rcz

wcz

2,
where wd is the nominal direct path detection range, rcz is the range to the center of the convergence  

zone and wcz is the convergence  zone width.  Figure 6.8 shows a plot of this function with rd = 5 kyd, 

rcz = 50 kyd and wcz = 1.5 kyd.  The choice of the value 0.8 in the defining expression for P(D r) was 

made for illustrative  purposes.  The sonar achieves detection via direct path propagation out to about 

10 kyd.  Convergence detections occur in a narrow range band centered on a range of 50 kyd.  

We will consider two target scenarios.  In the first scenario, the target probability density P(r) is 

assumed to be uniformly distributed in range and azimuth out to a range of 60 kyd.  This range was
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chosen to be just beyond the maximum detection range of the sonar.  In the second scenario, the target 

probability density is uniformly distributed over a square-shaped region that is 1000 kyd by 1000 kyd 

and the sonar is assumed to be located at the mid point of the  square.  A plot of P(r) for the second 

scenario is shown in figure 6.5.  

As we have previously discussed, the posterior probability density P(r D) is the answer to the question 

what is the probability of range given detection.  It is computed via the Bayesian formula

P(r D) =
P(D r)P(r)

∫0∞P(D r)P(r) r ,
where P(D r) is the sensor lateral range curve and P(r) is the prior target probability distribution.  For 

the CZ sonar case, P(r D) for scenario 1 and scenario 2 is shown in figure 6.9.  Even though the prior 

target probability densities are very different, the posterior distributions are similar.  The performance 

metrics P(D), W1/2,  P(r D), r and pd for the two scenarios are shown in table 6.4.  As we have previ-

ously seen in sections 6.1 and 6.2, the value of the sensor probability of detection,

P(D) = 
0

∞
P(D r)P(r) r,

again is strongly dependent on the choice of the prior distribution P(r) but the other performance 

metrics are not.  For the CZ sonar, the half seep width W1/2 does not adequately reflected the extended 

detection range of the sonar.
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Figure 6.8.  Sensor lateral range P(D r) for a convergence  zone sonar.
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Figure 6.9.  Convergence zone sonar posterior range distributions P(r D) for scenario 1 and scenario 2.  

Scenario 1 is represented by the smooth curve in blue. The posterior distributions are very similar.

Performance

Metric

Scenario 1 Scenario 2

P(D) 6.60×10-2 7.49×10-4

W1/2 6.56 kyd 6.56 kyd

r 45.2 kyd 45.6 kyd

pd 0.559 0.559

Table  6.4.  Performance metrics for a convergence  zone sonar.

6.4 Performance surface for minehunting sonar in a region with spatial variation 

in bottom backscatter

In the examples we have considered so far,  we have ignored the effects that spatial variation in the 

ocean environment has on system probability of detection P(D) and other related performance metrics.  

We will now consider a scenario in which the spatial variation of the environment plays an important 

part.  To  this end, we consider the following scenario:  A naval ship is searching a shallow-water ocean 

area that is 5000 yd by 4000 yd in size.  The ship is trying to find a target (mine) that is lying on the 

bottom.  The ships's high-frequency-active sonar is operated in a reverberation limited mode and 

makes detection via a direct propagation path.  The search region is divided into two parts as shown in 

figure 6.10.  Region 1 is an area of low bottom backscatter  and region 2 is a region of high bottom 

backscatter.   We anticipate that sonar performance will be much better in region 1 due to reduced 

reverberation masking levels.
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Figure 6.10.  Plan view environmental geometry for the mine-hunting sonar example.  Regions 1 and 2 

are respectively areas of low and high bottom backscatter.   Active sonar performance is better in region 

1 relative to region 2 due to lower reverberation levels.

The signal to mask (snr) ratio which the sonar achieves against a target at slant range R when the sonar 

employs a short CW pulse of length tp can be written in the form

snr(R) = 10
SL

10 bp(ϕ) br(ϕ) 10
-2α R
10

R4
10

TS

10  10
SL

10 bp(ϕ) br(ϕ) 10
-2α R
10

R4
σback(θ)RΦhorc tp 2 + 1

tp
10

AN

10 DF .

The numerator in this expression is the target echo and the denominator is the mask.  The two terms in 

the denominator are the bottom reverberation and noise power measured in the receiver bandwidth.  

In this expression SL is the projector source level, TS is the target strength, AN is the ambient noise 

spectral level, DF is the receive array directivity factor (not dB),  Φhor is the receiver horizontal beam 

width and c is sound speed.  We  assume that soundspeed is constant.  The projector and receiver

beam patterns  at launch angle ϕ are denoted by bp(ϕ) and br(ϕ), and σback(θ) is the bottom backscatter  

function at grazing angle θ.  If the target is lying on the bottom and the sonar projector is operated at 

sufficiently large levels with the sonar steered towards the target, then bottom reverberation is the 

dominant masking component and 

snr(R) =
10

TS

10

σback(θ)RΦhorc tp 2 .
A computation of sonar signal to noise ratio (snr) has been performed using the sonar and environmen-

tal parameters  shown in table 6.5 and the bottom backscatter  models shown in figure 6.11.  The results 

of this computation are shown in figure 6.12.  As can be seen by examining the figure, sonar perfor-

mance is manifestly better in region 1. Sonar signal to noise ratio for a bottom-lying target is shown in 

figure 6.13.  Figure 6.13 is  just a horizontal slice (or cut) through figure 6.12 at the depth of the bottom 

(500 ft).
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We will assume that the minehunting sonar employs an envelope detector with characteristics  illus-

trated in figure 6.14.  The mapping from signal to noise ratio to probability of detection shown in figure 

6.14 is used to produce the lateral range curves P1(D r) and P2(D r) for regions 1 and 2 as shown in 

figure 6.15.  Probability of detection versus horizontal range r is clearly better in region 1 than in region 

2.  This results from the fact that region 1 has lower bottom backscatter  and better sonar signal to 

noise ratio.

Parameter Value Parameter Value

Source level 224 dB re 1 μPa Pulse length 1 ms

Frequency 80 kHz Receiver bandwidth 1000 Hz

Tilt 20 deg down Receiver noise 51 dB re 1 μPaHz1/2
Horizontal beamwidth

Vertical beamwidth

Source depth

1.7 deg

20 deg

100 ft

Target strength

Water depth

Wind speed

0 dB

500 ft

5 kt

Table  6.5. Sonar and environmental parameters.
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Figure 6.11.  Bottom backscatter  models for region 1 and region 2.

Figure 6.12-1.  Color display of sonar  signal to noise ratio (snr) in region 1 (low bottom backscatter)  and 

region 2 (high bottom backscatter).   Results are are presented on a 0-60 dB range with warm colors 

corresponding to high snr values.  
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Figure 6.12-2.  Color display of sonar  signal to noise ratio (snr) in region 1 (low bottom backscatter)  and 

region 2 (high bottom backscatter).   Results are are presented on a 0-60 dB range with warm colors 

corresponding to high snr values.  
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Figure 6.13.  Sonar  signal to noise ratio (snr ) for bottom-lying target in region 1 (low bottom backscat-

ter) and region 2 (high bottom backscatter).   
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Figure 6.14.  Conversion from sonar  signal to noise ratio (snr) for to probability of detection for a sonar 

employing an envelope detector with a false alarm rate of  2.8*10^(-7) .  
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Figure 6.15.  Sonar lateral range curves P1(D r) and P2(D r) in regions 1 and 2 for a bottom lying 

target.  The false alarm rate is  2.8*10^(-7) .  

We now turn our attention to the computation of sonar probability of detection for a given receiver 

location (xr, yr) which we will denote by P(D xr, yr).  A computation or plot of this quantity is some-

times referred to as a performance surface.  Since sonar performance is sensitive to the location of the 

sonar and the target, we make this computation by marginalizing over the target location (xt, yt).  In 

order to do this, we will assume that the target location is uniformly distributed over the region 

depicted in figure 6.10.  This assumption implies that the the target probability density function is given 

by

P(xt, yt) =
1

xmax ymax
, 0 < x < xmax, 0 < y < ymax

0, otherwise.

where xmax = 5000 yd and ymax = 4000 yd.  The performance surface P(D xr, yr) is then

P(D xr, yr) = 
0

xmax
0

ymax
P(D xr, yr, xt, yt)P(xt, yt)xt yt.

Due to the simple nature of P(xt, yt), we can compute  P(D xr, yr) via

P(D xr, yr) =
1

xmax ymax

0

xmax
0

ymax
P(D xr, yr, xt, yt)xt yt.

In this example, the spatial dependence of sonar performance enters our computations through the 

target location.  If the target location is in region 1, then we compute P(D xr, yr, xt, yt) via P1(D r).  If 

the target location is in region to then we use P2(D r) where P1(D r) and P2(D r) are defined in figure 

6.15.  The horizontal range r in either case is simply

r = (xr - xt)2 + (yr - yt)
21/2.

A computation of the performance surface P(D xr, yr) over a discrete set of receiver grid locations 

(xm, yn) is shown in figure 6.16.  There are several distinct areas in the figure.  There is a flat, plateau 

shaped area corresponding to the center portion of region 1 in figure 6.10.  In this area, sonar perfor-

mance is relatively high because nearby targets  are more likely to be located in a region of low bottom 
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backscatter.   There is another flat, plateau shaped area corresponding to the center portion of region 2 

in figure 6.10.  In this second area sonar performance is not as good because nearby targets  are more 

likely to be located in a region of high bottom backscatter  .  There is also a sloped transition area 

between regions 1 and 2.  Additionally, near the boundaries of the region shown in figure 6.10, the 

performance surface values  P(D xr, yr) decay due to geometrical edge effects.  If the receiver is on or 

near the boundary, then range to a random target location is more likely to be larger than if the 

receiver location was well removed from the boundary.  This edge effect biases P(D xr, yr) towards 

lower values whenever (xr, yr) is located near a boundary.  It simply reflects the fact that P(D xr, yr) 

depends on the product of P(D xr, yr, xt, yt) and P(xt, yt) through the range map defined by the previ-

ous equation.

Figure 6.16.  Computation of the performance surface P(D xr, yr) via marginalization over the target 

probability density P(xt, yt).

The performance surface  P(D xr, yr) can also be computed by a Monte Carlo simulation.  As we shall 

see this is not a computationally efficient process.  However,  the monte Carlo approach does intuitively 

correspond to the idea of repeated, random engagements between a sonar and a target.  This is the 

type of engagement that occurs in some naval campaign models.  The first step in the MonteCarlo 

Simulation is to randomly generate  a pair of receiver and target location {(xr, yr), (xt, yt)} and to com-

pute the range from receiver to the target.  Next we compute a realization  of probability of detection

pd = P1 or 2(D r),

where P1 or 2(D r) means use the lateral range cure for region 1 if the target location (xt, yt) is in region 

1.  If the target location is in region 2, then the lateral range cure for region 2 is used to compute pd.  

The third step is to respectively accumulated probability of detection and opportunity into separate  

arrays α(xm, yn) and β(xm, yn) where (xm, yn) represent a two-dimensional discretization of receiver 

locations over the region {(0, xmax), (0, ymax)}.  If the array indices m and n are such that xm ≤ xr < xm+1 

and yn ≤ yr < yn+1, then α(xm, ym) is incremented by pd and β(xm, yn) is incremented by 1.  The arrays  α(xm, yn) and β(xm, yn) are initially set to zero before the Monte Carlo process is begun.   A large number 

of realizations  are required before meaningful estimates can be made. In the example under discussion 
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in this session, we used 1,000,000 realizations.   Once the Monte Carlo looping process is finished, 

P(D xm, yn) is estimated via

P(D xm, yn) =
α(xm, yn)β(xm, yn) ,

which is simply the ratio of accumulated probability divided by accumulated opportunity.  The results 

of the Monte Carlo simulation are shown in figure 6.17.

Figure 6.17.  Computation of the performance surface P(D xr, yr) via Monte Carlo simulation with 

1,000,000 realizations.

Cuts through figures 6.16 and 6.17 at the position yr = 2000 yd are shown in figure 6.18.  The smooth line 

corresponds to the cut through the performance surface computed via the marginalization process.  

The jagged lie is the cut through the Monte Carlo simulation.  There is clearly agreement between the 

two approaches.  However,  even at 1,000,00 realizations,  the Monte Carlo computation has only par-

tially converged to the marginalization computation.
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Figure 6.18.  Computation the marginalization and Monte Carlo computations of the performance 

surface P(D xr, yr).

Referring to figure 6.18, the probabilities of detection in the plateau regions centered on xr = 1500 yd 
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and xr = 3500 yd are to a high degree of approximation simply

0.0621 = P(D 1500, 2000) =
1

xmax ymax

0

xmax
0

ymax
P1D r = (1500 - xt)2 + (2000 - yt)

21/2 xt yt,
0.0164 = P(D 3500, 2000) =

1

xmax ymax

0

xmax
0

ymax
P2D r = (3500 - xt)2 + (2000 - yt)

21/2 xt yt,
where P1(D r) and P2(D r) are the lateral range curves that govern sonar performance shown in 

figure 6.15.  A logical question to ask at this point is the following: Why are these probabilities of detec-

tion so small?  The answer is that P(D xr, yr) depends on the integrated  product of sensor lateral range 

times target probability density.  In this case the target probability density is  proportional to the 

product 1 / (xmax ymax).  When the target probability density is spread our over a wide area, P(D xr, yr) 

can be small in spite of favorable sensor lateral range characteristics.   If no target is present, then 

sensor probability of detection is zero.

A much more favorable view of sonar performance can be obtained by making the target probability 

distribution dependent upon receiver location and assuming that the target is uniformly distributed in 

range and azimuth out to some maximum range that is pegged to sonar performance.  For our mine-

hunting sonar, this maximum range would be perhaps rmax = 1000 yd.   Now the probabilities of detec-

tion at the receiver locations (1500 yd, 2000 yd) and (3500 yd, 2000 yd) would be

0.394 =
1

1

2
rmax
2


0

rmax
P1(D r) r  r,

0.104 =
1

1

2
rmax
2


0

rmax
P2(D r) r  r.

These latter probabilities are five times larger.   Which is correct?   The answer to this question depends 

on the application.  If all that is required is a relative measure of sonar performance then the latter 

approach is fine.  However,  if you require probabilities that correspond to physically realizable engage-

ment scenarios, then the latter approach is totally inappropriate.  In this case the performance surface 

value P(D xr, yr) should be computed via

P(D xr, yr) = 
0

xmax
0

ymax
P(D xr, yr, xt, yt)P(xt, yt)xt yt,

and the target probability distribution must be independent of the receiver location.
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