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This document illustrates how various types of uncertainty affect the forecasting of sonar performance in 

naval applications. The first type of uncertainty arises from the fact that we have incomplete knowledge 

regarding key target kinematic parameters such as range, bearing, depth, heading, speed, etc. In general 
key sonar performance metrics such as the sonar probability of detection P(D) are dependent upon each 

of these kinematic parameters. A  second type of uncertainty is caused by the actual oceanographic 

environment in which the sonar operates. At a conceptual level, a sonar makes a mark on a gram or 
display when the voltage in a detector circuit exceeds a threshold. The probabilities with which these 

marks occur are determined by the statistics of the noise and signal that the sonar actually experiences. 
The statistical distribution of the signal and noise fields at the sonar receiver are strongly influenced by a 

nondeterministic component of ocean sound transmission. Numerous examples are presented.
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1.0 Introduction
An important task in naval operational analysis is the forecasting of sonar performance. Questions of 
prime interest include the following: How far can a particular sonar detect a threat of interest?  What is 

the likelihood that this sonar will detect the threat?  Probability theory is used as a basis for answering 

these questions because of the uncertain nature of the background information upon which the ques-
tions are either implicitly or explicitly posed. Uncertainty in the forecasting of sonar performance arises 

from a variety of inter-related  sources. The first type of uncertainty arises from the fact that we have 

incomplete knowledge regarding key target kinematic parameters  such as range, bearing, depth, 
heading, speed, etc. In general key sonar performance metrics such as the sonar probability of detec-



tion P(D) are dependent upon each of these kinematic parameters.  When these parameters  are only 

imprecisely known, then we compute a sonar performance metric such as P(D) by marginalization over 
the joint probability distribution of the kinematic uncertainty.

A  second type of uncertainty is caused by the actual oceanographic environment in which the sonar 
operates. At a conceptual level, a sonar makes a mark on a gram or display when the voltage in a 

detector circuit exceeds a threshold. The probabilities with which these marks occur are determined by 

the statistics  of the noise and signal that the sonar actually experiences. The statistical  distribution of 
the signal and noise fields at the sonar receiver are strongly influenced by a nondeterministic compo-
nent of ocean sound transmission. For example, in a multipath environment a passive sonar will often
experience a Rayleigh fading signal with a 5.56 dB standard deviation. The sonar designer realizes this 

and builds a detector which maximizes sonar performance in light of the known statistical  distribution 

of the signal and noise. For the case of the Rayleigh fading signal, the optimum detection algorithm is a 

matched filter followed by an envelope detector.

Sonar detection thresholds are set based upon the noise.  It is not necessary to know exactly how loud 

the signal is in order to have an optimum detector.   However,  if we want to forecast sonar performance 

then we need to predict the signal and noise fields at the sonar receiver.   Forecasting sonar perfor-
mance leads to third type of uncertainty.   Due to our imperfect knowledge about the ocean environ-
ment (imperfect data bases, unknown locations of noise sources such as merchant ships, etc.), there is 

a degree of uncertainty associated with our performance prediction.  This type of uncertainty deals 

with a range of possibilities, none of which can be determined from our current state  of environmental 
knowledge.  

There are interrelations between each of these types of uncertainty.  Imagine a scenario in which the 

acoustic environment is known with a great degree of certainty but the depth of the threat is unknown. 
Since the acoustic environment is well known, the transmission loss from the sonar to the range of the 

tragedy can be predicted with a high degree of certainty.  However,  since the depth to which this trans-
mission occurs is unknown, the uncertainty in target depth in effect produces a high degree of uncer-
tainty in a forecast of the actual propagation. Target  strength if known, will depend strongly upon the 

relative geometry between the sonar and target. If this geometry is unknown, then the known quantity 

target strength in effect becomes a statistical  quantity due to the underlying geometric uncertainty.  
This document investigates  each of these types of uncertainty and investigates  the effects that they 

have on various measures of sonar performance.

In section 2 we present a brief review of those elements of probability theory that provide the founda-
tion for sonar performance assessment. A measure of sonar performance that is of fundamental impor-
tance in this development is the sensor lateral range curve which is the probability of detection for a 

target located at a known range from a sensor. In mathematical terms it is written P(D r) where D 

denotes the event detection and r denotes range from the sensor to the target. Using this probabilistic 

foundation as a basis, we develop a number of different sonar performance metrics and explore the 

relationships between kinematic uncertainty,  sensor lateral range and specific sonar performance 

metrics. We include a treatment of Bayesian measures of sonar performance. In sections 3 and 4 we 

address how uncertainty in the oceanographic environment in which the sonar operates effects sonar 
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performance prediction. We use results from signal detection theory (Selin-1965, Whalen-1972) to 

develop techniques for computing the sensor lateral P(D r) based upon a knowledge of the signal and 

noise fields at the sonar. Target  position is incorporated  via the sonar equation (Tucker  and 

Gazey-1977, Urick-1983, Burdick-1984) which is shown to be a natural outgrowth of signal detection 

theory. In section 5 we show how uncertainty in our knowledge of the environment effects sonar 
performance prediction. In section 6 we present examples of the computation of sonar performance 

metrics for several different scenarios of practical interest.

2.0 Measures of sensor performance

2.1 Introduction

In order to obtain estimates of meaningful sonar performance metrics we will draw upon key results 

from probability theory and the field of Bayesian inference (Jeffreys-1973, Jaynes 2003). A very concise 

treatment of this topic can be found in (Gregory 2005).  Following Jaynes, we employ the notation:

P(A B) = conditional probability for event A , given event B ,

P(AB CD) = joint conditional probability for the combined event A andB,

given the combined event C andD.

In terms of the notation commonly used in set theory, AB = A⋂ B  and A + B = A⋃ B, where the symbols ⋂ 

and ⋃ respectively denote the operations of intersection and union.

Bayesian inference is concerned with the validity of a set of rival hypotheses {Hi}, i, 1, 2, .., n, in light of 
some additional information A and any prior information I. As an example, we may interested in the 

probability distribution of a target's  location in light of the additional knowledge that the target has 

been detected. The targets  probability distribution is in effect a set of hypothesis about where the 

target is. The additional information is the detection of the target. The prior information could consist 
of knowledge about the way in which sound propagates  through the ocean environment, the reflective 

or radiation characteristics  of the target and performance details about the detecting sonar. In our 
development and applications, we will assume that the hypotheses Hi are mutually exclusive and 

exhaustive. The basic rules for manipulating Bayesian probabilities are the sum rule

P(Hi I) + PHic I = 1,

and the product rule

P(Hi A I) = P(Hi I)P(AHi I) = P(A I)P(Hi A I).

In the most general sense, Hi and A are propositions rather than events. The quantity Hi
c
 is used to 

represent the negation of the proposition Hi. It is more general than but analogous to the simple set 
theory concept of a compliment. Practically speaking, Hi

c
 can be thought of as the complement of the 

event Hi.

 A  set of  mutually exclusive hypotheses has the property that P(HiHj I = 0 for i≠j. In this case the sum 

and product rules lead to the generalized sum rule

Computation of Sonar Performance Metrics Part 1.nb     3



PHi + Hj I = P(Hi I) + PHj I.

Since we have assumed that the hypothesesHi are mutually exclusive and exhaustive, they in effect 
span the sample space of interest so that



i=1

n

P(Hi I) = 1.

If the background information I does not favor anyone of the hypotheses Hi over another,  then

P(Hi I) =
1

n
, i = 1, 2,…n.

Conditioning the proposition A on the Hi leads to the following rule for calculating a probability:

P(A I) = 

i=1

n

P(A Hi I)P(Hi I).

This last result is also known as marginalization.  Bayes theorem follows from the Product rule:

P(Hi A I) =
P(Hi I)P(A Hi I)

P(A I)
=

P(Hi I)P(A Hi I)

∑i=1
n P(A Hi I)P(Hi I)

.

In many circumstances  it is not necessary to explicitly retain the dependence of these probabilities 

upon the prior information I.  In fact, the constant  appearance of I term is unnecessarily verbose from a 

notational standpoint. To  this end, we state  the rules in a more compact form:

Sum rule : P(Hi) + PHic = 1,

Extended sum rule : PHi + Hj = P(Hi) + PHj , for i ≠ j and PHi Hj = 0,

Product rule : P(Hi A) = P(Hi)P(A Hi) = P(A)P(Hi A ),

Marginalization : P(A) = 

i=1

n

P(A Hi)P(Hi),

Bayes theorem : P(Hi A ) =
P(A Hi)P(Hi)

P(A)
=

P(A Hi)P(Hi)

∑i=1
n P(A Hi)P(Hi)

.

2.2 Simple examples of Bayes theorem

Bayes theorem is best understood by way of example. Consider the situation of a coastal  surveillance 

craft looking for a small craft illicitly carrying a nuclear weapon. When confronted with a craft carrying 

the nuclear device, the patrol boat has a sensor that is capable of correctly detecting the presence of 
the device 99% of the time provided that the device is actually present. The false positive rate for the 

sensor is 2% and the false negative rate is 1%. The patrol craft searches an area in which 10000 small 
craft are present. Prior intelligence indicates that one of these craft is carrying an illicit nuclear weapon. 
In the course of an individual patrol, the patrol craft encounters a small craft and administers the test. 
A positive result from the test is obtained. A question of obvious importance is the following: Should 

the patrol craft commander be overly concerned? Bayes theorem provides a mechanism for addressing 

this question. In order to apply Bayes theorem, we define the hypotheses H0 and H1 as follows:
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H0 : The craft is not carryinga nuclear weapon,

H1 : The craft is carryinga nuclear weapon.

There are two possible decisions that the sensor can make:

D0 : The craft is not carryinga nuclear weapon,

D1 : The craft is carryinga nuclear weapon.

These leads to the decision matrix:

HypothesisDecision H0 is true H1 is true
D0 : Accept H0 Correct conclusion Type 2 error : β

D1 : Accept H1 Type 1 error : α Correct conclusion

The performance metrics of the sensor on the patrol craft and the prior information regarding the 

distribution of the threat imply the following probabilities:

P(D1 H0) = α = 0.02, P(D1 H1) = 1 - β = 0.99,
P(H0) = 0.9999, P(H1) = 0.0001

where α is the sensor false positive rate (type 1 error) and β is the sensor false negative rate (type 2 

error). The quantity 1 - β is the power of the sensor.

Bayes theorem implies

P(H1 D1) = (P(D1 H1)P(H1)) / (P(D1 H0)P(H0) + P(D1 H1)P(H1))
0.99 (0.0001)

0.02 (0.9999) + 0.99 (0.0001)
= 0.004926

Even though an alarm has occurred, the probability that the craft is actually carrying a nuclear weapon 

is quite small. What Bayes theorem tell us in this case is that the combination of a low threat density (1 

in 10000 craft) and a relatively high false alarm rate (0.02 per craft encounter) renders the sensor 
useless as a search tool. The situation drastically changes if the sensor false positive rate can be 

reduced to 0.01 % . In this case

P(H1 D1) =
0.99 (0.0001)

0.0001 (0.9999) + 0.99 (0.0001)
= 0.4975

and based upon the occurrence of an alarm, the patrol craft command has about a 50/50 chance of 
being faced with the craft that is actually carrying the illicit nuclear weapon.

Bayes theorem also applies in situations that are best described by continuous probability density 

functions. Consider a scenario in which based upon some initial intelligence I, the position of a target at 
range x with respect to a sensor location is  described by the Gaussian probability density function

P(x I) =
1

2π σ0

exp-
(x - x0)2

2σ0
2

, -∞ < x < ∞,

where x0 = 10 is the mean target position and σ0 = 4 is the standard deviation of target position. Both x0 

and σ0 are assumed to be known as a result of the initial information I. P(x I) is our prior estimate of 
target position. It is plotted in the accompanying figure. Now suppose that we make a measurement M 

and that the target is detected at range with positional certainty described by the probability density 
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function

P(M x I) =
1

2π σ1

exp-
(x - x1)2

2σ1
2

, -∞ < x < ∞,

where x1=5 and σ1 = 2. The extension of Bayes theorem to continuous probability density functions 

implies that probability density P(M x I) of the target location in light of the measurement M is

P(x M I) =
P(M x I)P(x I)

∫-∞

∞ P(M x I)P(x I)x
.

In explicit terms this is

P(x M I) =
exp -

(x-x0)2

2σ0
2 +

(x-x1)2

2σ1
2 

∫-∞

∞ exp -
(x-x0)2

2σ0
2 +

(x-x1)2

2σ1
2  x

.

It is often convenient to refer to P(x M I) is the posterior target probability density. Figure 2.1 illus-
trates how the additional information about target location alters the estimate of target position. 
Initially the target probability density was centered on x = 10. The measurement M (data) indicated that 
the target was centered on x1 = 5 with a reduction in standard deviation from σ0 = 4 to σ1 = 2.  Bayes 

theorem results in an updated estimate of target location with mean and standard deviation

x2 = 
-∞

∞

x P(x M I)x = 6.00,

σ2 = 
-∞

∞

(x - x2 )2 P(x M I)x
1/2

= 1.78.
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Figure 2.1. Bayesian update of target location.

Now consider a second case in which there is increased uncertainty in the measurement of target 
position. We will suppose that we make a measurement M and that the target is detected at range with 

positional certainty described by the probability density function

P(M x σ I) =
1

2π σ

exp-
(x - x1)2

2σ2
, -∞ < x < ∞,

where σ is described by the uniformly distributed probability density function
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g(σ) =
1

σmax - σmin
, σmin < σ < σmax,

and zero otherwise.  Bayes theorem becomes

P(x σ M I) = (P(M x σ I)P(x I) g(σ)) 
-∞

∞


σmin

σmax

P(M x σ I)P(x I) g(σ)σ x .

The posterior target range distribution is obtained by marginalizing P(x σ M I) across σ:

P(x M I) = 
σmin

σmax

P(x σ M I)σ.

Figure 2.2 shows a computation with σmin = 2 and σmax = 5. Due to the increased uncertainty in the 

measurement M, the posterior target range distribution is more like the prior distribution than it was in 

the previous example. The posterior target range distribution is now less peaked and it has a longer tail 
to the right as evidenced by the shift in the mean (vertical line in figure 2) to the right of the mode. The 

mean and standard deviation of the posterior range distribution are now respectively 8.25 and 2.59. 
Before they were 6.0 and 1.78.
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Figure 2.2. Bayesian update of target location with increased uncertainty in the observed data.

2.3 Direct measures of sonar performance

A measure of sonar performance that is of fundamental importance is probability of detection for a 

target located at a known range from a sensor.  This quantity is also referred to as the lateral range 

curve (Koopman 1980).  In mathematical terms it is written P(D r) where D denotes the event detec-
tion and r denotes range from the sonar (or sensor) to the target.  In situations where sonar perfor-
mance depends on the bearing of the target relative to the sonar location we write P(D r θ)  where θ is 

the bearing of the target relative to receiver.   In general probability of detection versus range can 

depend on a variety of other factors :

1) Sensor parameters:  location, depth, heading relative to north and speed : (x,y,z0,ψ,v), 

2) Target  parameters:  range from receiver,  bearing relative to receiver,  depth, heading with respect to 

north and speed: (r, θ, z, ϕ, u),

3) Other parameters  including the time τ which we use to indicate that performance depends on the 

Computation of Sonar Performance Metrics Part 1.nb     7



specific environmental conditions that are in effect at the time of the prediction.  

In addition we always have some prior information about the scenario being addressed. Thus in the 

most general case we have P(D x y r θ zϕ I). 

In the analysis that follows we will usually assume that sensor parameters  are known with complete 

certainty.   If we characterize our uncertainty in target location by the probability density function 

P(r, θ, z),  then the probability of detection at a given receiver location (x, y) can be computed through 

the process of marginalization:

P(D x y ) = 
0

2π


0

∞


zmin

zmax
P(D x y r θ z)P(r, θ, z)z  r θ.

If target depth is independent of target position and if  target position is characterized by a uniform 

probability density distribution out to some range rmax measured with respect to the receiver location 

(x, y), then

P(D x y rmax ) =
1

2π

0

2π


0

rmax

zmin

zmax
P(D x y r θ z)P(r) f (z)z  r θ,

where f (z) is the target depth probability density function and 

P(r, θ) =
1

2π

r
1
2
rmax
2

=
1

2π
P(r).

If sensor performance is azimuthally independent and if the target is at a known depth, then 

f (z) = δ(z - zt) where δ(z) is the Dirac delta function and

P(D x y rmax) =
1

1
2
rmax
2


0

rmax
P(D x y r zt) r  r.

In terms of a simpler notation this suppresses the sensor position dependence, probability of detection 

can be written

P(D) =
1

1
2
rmax
2


0

rmax
P(D r ) r  r.

Clearly P(D) is very sensitive to the choice of rmax.  In fact if rmax is large, then P(D) will be small irrespec-
tive of the characteristics  of the lateral range curve P(D r).

An alternate measure of sonar performance that can be computed from the sensor lateral range 

P(D r) is the sensor sweep width W = 2W1/2 where the sensor half sweep width is defined by

W1/2 = 
0

∞

P(D r) r.

The sweep width W is a metric of sonar performance that does not depend on the target probability 

density P(r).  Sweep width plays a prominent part in search theory (Koopman 1980).  Consider the 

problem of detecting a target that is located in a region of area L2.  Suppose that the detection system 

moves through this region on random course with speed v and with sweep width W.  The probability of 
detecting the target in a small time interval of length Δt is equal to the ratio of the area swept out by 

the detecting system in time Δt to the area of the search region.  This ratio is Δt vW L2.  The probability 
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of not detecting the target during this time interval is 1-Δt vW L2.  The probability of not detecting the 

target in n independent intervals of length Δt is 

Pmiss = 1-Δt vW L2n.

If we define t = nΔt, then the probability of at least one target detection by time t is 

Pd(t) = 1 - Pmiss = 1 - exp-
t vW

L2
,

provided that n is large.  The above result is referred to as the formula of random search (Koopman 

1980).  Its validity depends upon three assumptions.  First the target's  probability density must be 

uniformly distributed in the search region. Second, the searcher's path through the search area must 
be random in the sense that  its different segments are placed independently of one another.   Third, 
the searcher will always detects the target within the lateral range W /2 on either side of the search path 

and never at distances  beyond this lateral range.

If the search area is rectangular in shape and is searched in an organized fashion with non-overlapping 

sweeps of width W, then detection can be more rapidly achieved than as predicted by the formula of 
random search.  In this case, the time required to completely sweep the search area is ts = L2 vW, and 

the probability of detection by time t is 

Pd(t) =
t vW

L2
,

and unity at larger times.  If we approximate the exponential term in the former result for Pd(t) with a 

power series to first order in time t, then the latter result for   Pd(t) is obtained. 

2.4 Bayesian characterizations  of performance

In the characterization  of sonar performance, we normally think in terms of the sensor lateral range 

P(D r).  Lateral range is the answer to the question, "What is the probability of detection for my sensor 
given a target at range r?".   An alternate measure of sonar performance is the posterior range distribu-
tion P(r D).  It is the answer to the question, "What is the probability of range given that I make a 

detection?".   The two quantities P(r D) and P(D r) are related by the Bayesian relationship

P(r D) =
P(D r)P(r)

P(D)
=

P(D r)P(r)

∫0
∞P(D r)P(r) r

,

where P(r) is the prior target range distribution. As previously discussed, P(D) is very sensitive to the 

choice of the prior range distribution P(r).  If the target location probability as described by P(r) is 

spread out over a wide area then the probability of detection P(D) will be very small.  The posterior 
range distribution P(r D) is not in general very sensitive to the choice of the prior range distribution.  
The insensitivity of P(r D) to the choice of P(r) follows from the fact that P(r) appears in both the 

numerator and denominator of the defining expression for P(r D).  This is Bayes theory saying, "If you 

had a detection, then the target had to be close enough for you detect it, regardless of where you 

thought it was in the first place.".   

The prior target range distribution in some circumstances  may form the basis for alternate perfor-
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mance measures.  One of these is the likely detection range E[r] defined as the mean of the prior target 
range distribution:

r = E[r] = 
0

∞

r P(r D) r.

Another is the likely detection probability pd defined as the expected value of the probability of detec-
tion P(D r)

pd = E[P(D r)] = 
0

∞

P(D r)P(r D) r.

2.5 Measures of sensor performance in the presence of multiple targets

Target  probability density is not necessarily the appropriate measure of target location with which to 

characterize sonar detection performance.  Imagine two regions with the same spatial and temporal 
characteristics.   Region 1 contains a single target whose location is described by the uniform probabil-
ity density function P(x, y).  Region 2 contains n targets  (n > 1) where each target operates indepen-
dently from the others and the location of each of these targets  is individually described by the uniform 

probability density function P(x, y).  Clearly a sonar system that operates in region 2 will have a higher 
probability of detecting a target by virtue of the increased target density in region 2 versus region 1.

Let P(D r) denote the sonar lateral range curve at radial distance  r from a point of interest.  In proba-
bilistic terms P(D r) is the probability of detection (event D) given the target range r.  Suppose that a 

single target with uniform probability density is located in the circular shaped  region 0 < r < rmax, where 

rmax is a distance  chosen based upon the characteristics  of the sonar.  Under these circumstances,  the 

target probability density can be written in terms of the range r as,

P(r rmax) =
r

1
2
rmax
2

, 0 < r < rmax.

The probability of detecting this single is target is 

p = P(D rmax) = 
0

rmax
P(D r)P(r rmax) r.

Now suppose that there are n independent targets  present in the circular shaped  region 0 < r < rmax.  
The sonar now has n independent chances to make target detections.  The probability that the sonar 
makes at least one detection is 

pn = 1 - (1 - p)n = 1 - qn,

where q = 1 - p is the probability of miss.

Let us suppose that the density (but not probability density) of targets  in the region about the sonar is 

constant  and is described by the parameter  β measured in number of targets  per unit area.  Then the 

expected number of targets  in the circular region 0 < r < rmax is λ =π rmax
2 β .  If N denotes the actual 

number of targets  present in the region at a particular instance,  then N is a Poisson random variable 

with mean λ and probability mass function f (n) defined by
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f (n) = exp(-λ)
λn

n !
, n = 0, 1, 2,…

The expected value of making at least one detection is E[pn] can be found by computing

E[pn] = 

n=0

∞

1 - qn f (n) = 1 - exp(-λ)

n=0

∞ qn λn

n !
= 1 - exp(-λ) exp(λq) = 1 - exp(-λ p).

In terms of the definition of p and P(r rmax) this is

E[pn] = 1 - exp-π rmax
2 β 

0

rmax
P(D r)

r
1
2
rmax
2

 r = 1 - exp-2π β 
0

rmax
P(D r) r  r.

The expected value of at least one detection E[pn] has some very interesting properties.  First of all it is 

a probability in the formal sense that its value lies between zero and one.  It does not go to zero as rmax 
increases thereby as does P(D rmax).  Furthermore, as a measure of sonar effectiveness, E[pn] rewards 

long range sonars and penalizes short ranges sonars since the integral quantity

A = 2π 
0

rmax
P(D r) r  r

will be large for a long range sonar and small for a short range sonar.  This quantity has the dimensions 

of area.  In fact, we can interpret the quantity A as the area swept out by the sonar in an azimuthally 

invariant environment.  To  this end, it is convenient to write

E[pn] = 1 - exp[-β A(rmax)].

 The area A(rmax) is the two-dimensional analog of the sonar sweep width.  Using A as the measure of 
effectiveness avoids the problem of having
to choose a sonar specific value of rmax.  In calculating A, you just integrate  out in range until P(D r) is 

vanishingly small.  

2.6 Computation of figures 2.1 and 2.2

Figure 2.1

Clear definitions:

Clear[p0, p1, s0, s1, x0, xmax, norm, x2];

The prior probability density function is:

p0[x_] :=
1

2 π s0
Exp-

(x - x0)2

2 * s02


The likelihood of the data is:

In[ ]:= p1[x_] :=
1

2 π s1
Exp-

(x - x1)2

2 * s12


The Bayesian evidence (normalization) is:
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In[ ]:= s0 = 4.0; x0 = 10.0;
s1 = 2.0; x1 = 5.0; xmax = 30.0;
norm = Integrate[p0[x] × p1[x], {x, 0, xmax}]

Out[ ]=

0.0477296

The posterior probability density function is:

In[ ]:= p2[x_] :=


1
2 π s0

Exp- (x-x0)2

2*s02
 

1
2 π s1

Exp- (x-x1)2

2*s12


norm

The posterior mean is given by:

In[ ]:= x2 = NIntegrate[x * p2[x], {x, 0, xmax}]
Out[ ]=

6.00257

Figure 2.1 can be computed via the following:

In[ ]:= Plot{p0[x], p1[x], p2[x]}, {x, 0, 20}, 

Out[ ]=
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In[ ]:= Figure 2.2

Now we consider a second example (figure 2.2) .

Clear definitions:

In[ ]:= Clear[p0, p1, g, s, s0, s1, smin, smax, x0,
smin, smax, norm, p2, p2marginal, x2, data, p2marginalA];

The prior and the likelihood of the data re respectively:
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In[ ]:= p0[x_] :=
1

2 π s0
Exp-

(x - x0)2

2 * s02


p1[x_, s_] :=
1

2 π s
Exp-

(x - x1)2

2 * s2


g[s_] := 1 / (smax - smin)

The evidence (normalization) is:

In[ ]:= s0 = 4.0; x0 = 10.0;
s1 = 2.0; x1 = 7;
smin = 2; smax = 5;
norm = NIntegrate[p0[x] × p1[x, s] × g[s], {x, x0 - 3 s0, x0 + 3 s0}, {s, smin, smax}]

Out[ ]=

0.0638496

The posterior and marginal are:

In[ ]:= p2[x_, s_] :=


1
2 π s0

Exp- (x-x0)2

2*s02
 

1
2 π s

Exp- (x-x1)2

2*s2
 g[s]

norm
p2marginal[x_] := NIntegrate[p2[x, s], {s, smin, smax}]

The mean of the posterior marginal is:

In[ ]:= data = Table[{x, p2marginal[x]}, {x, 0, 20, 0.05}];
p2marginalA = Interpolation[data, InterpolationOrder  1];
x2 = NIntegrate[x * p2marginalA[x], {x, 0, 20}]

Out[ ]=

8.24565

Figure 2.2 is given by the following:

In[ ]:= Plot{p0[x], p2marginal[x]}, {x, 0, 20}, 

Out[ ]=
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3.0 Signal detection

3.1 Signal known exactly

In order to begin our discussion we will examine the problem of detection from the standpoint of the 

sonar receiver.The  sonar receiver must decide whether a signal of interest is present or not.The  sonar 
receiver observes x(t), the output of a noisy channel  for a time interval (0, T). The problem for the 

receiver is to determine whether or not a signal s(t) is present at the input to the channel.  If the signal 
is present, the channel adds noise n(t) to the signal s(t). If the signal is not present, then the output of 
the channel is simply the noise n(t). The alternatives that the receiver faces can be written in the form:

H0 : x(t) = n(t), 0 < t < T,

H1 : x(t) = n(t) + s(t), 0 < t < T.

We will initially assume that the shape of the signal s(t) is exactly known to the sonar receiver.  In this 

case the optimal test statistic  y(T) can be shown to be a replica correlator (see Selin 1965 and Whalen 

1971) which can be written in the form:

y(T) = 
0

T
s(t) x(t) t.

We will assume that the receiver channel has bandwidth B and that the noise in the receiver channel is 

white noise that is normally distributed with mean zero and variance σ2 = N0 B where N0 is the noise 

power spectral density which is constant  over the band B in accordance  with the assumption of white 

noise. In mathematical terms we can write our description of the noise as

n(t) = N0, σ2,

which reads n(t) is normally distributed with zero mean and variance equal to σ2.

If we sample the output of the replica correlator at the Nyquist frequency 1 / (2B) then we will obtain 

independent samples of identically distributed normal random variables.  Either the signal is not 
present (null hypothesis H0) or it is present (alternative hypothesis H1). Thus there are two cases regard-
ing the statistical  distribution of the test statistic  y(T):

H0 : y(T) = n0, σy
2,

H1 : y(T) = nE, σy
2,

where E denotes the signal energy and σy
2
 the variance of the correlator output defined by:

E = 
0

T
s(t)2  t, σy

2 =
E N0

2
.

A false alarm is said to occur when the statistic  y(T) exceeds a threshold K and the signal is not present. 
A detection is said to occur if y(T) exceeds the threshold K and the signal is actually present. The proba-
bilities of false alarm and detection are then
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pfa = 
K

∞ 1

2π σy

exp-
y2

2σy
2
 y = 

zpfa

∞ 1

2π

exp-
y2

2
 y,

pd = 
K

∞ 1

2π σy

exp-
(y - E)2

2σy
2

 y = 
zpd

∞ 1

2π

exp-
y2

2
 y

where

zpfa =
K

σy
, zpd =

K - E

σy
.

Elimination of the threshold K from these expressions leads to the relationship

E

N0
=

zpd - zpfa
2

2
.

The quantity E/N0 is a measure of signal to noise ratio (SNR). The actual signal to noise ratio at the 

correlator output is 2 E /N0. The detection threshold DT is defined to be 

DT = 10 log10
zpd - zpfa

2

2
 dB.

Detection threshold is the amount of SNR required to achieve sonar performance at a specified false 

alarm probability pfa and probability of detection pd. For instance,  a false alarm probability of 10-4 

requires zpfa = 3.72 and a probability of detection of 0.90 requires zpd=-1.645. This equates to a detec-

tion threshold DT of 11.6 dB.  For a fixed value of zpfa, i.e. for a fixed false alarm rate, the probability of 

detection is

pd
E

N0
= 

zpfa-zsnr

∞ 1

2π

exp-
y2

2
 y = 

-∞

zsnr-zpfa 1

2π

exp-
y2

2
 y = Φzsnr - zpfa, .

where Φ(x) is the cumulative normal distribution function and

zsnr =
2 E

N0
.

Since Φ(0) = 1 /2, the probability of detection pd is 0.5 when zsnr = zpfa. For a prescribed probability of 

detection pd the condition obtains when 

S

N0
=

zpd - zpfa
2

2 T

where S defined by

S =
1

T

0

T
s(t)2  t

is the signal power in the detector band.The  recognition differential is defined to be 

RD = 10 log10
zpd - zpfa

2

2 T
 dB.
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If zsnr - zpfa > 2 then to a good degree of approximation

pd = 1 -
exp-zsnr - zpfa

2 2

zsnr - zpfa 2π

.

3.2 Noise-like signal

As a second example of signal detection, we consider the detection of a noise-like signal in a noisy 

background. We will assume that the receiver channel has bandwidth B and that the noise in the 

receiver channel is white noise that is normally distributed with mean zero and variance σn
2 = N0 B 

where N0 is the noise power spectral density which is constant  over the band B in accordance  with the 

assumption of white noise. The signal in the receiver will also be assumed to be white noise but with 

variance σs
2. The two cases regarding the statistical  distribution of the signal in the receiver channel are:

H0 : x(t) = n0, σn
2,

H1 : x(t) = n0, σs
2 + σn

2,

This last equation follows from the fact that when independent Gaussian random variables are added 

together,  the result is a Gaussian random variable whose mean and variance is the sum of the means 

and variances of the constituents. The optimum test statistic  y(T) can be shown to be the energy 

detector

y(T) = 
0

T
x(t)2  t.

In order to evaluate this integral, the output of the receiver channel is sampled at time intervals 

Δt = 1 / (2B) for the time interval (0, T) yielding M = 2BT independent samples. Thus in discrete form the 

test statistic  y(T) becomes

y(T) = Δt
i=1

M

x(ti)2

Exploiting the fact a sum of  squares of independent Gaussian random variables with zero mean are 

unit variance yields a chi-squared random variable allows us to conclude that

H0 :
1

Δtσn
2
y(T) = Χ2(M),

H1 :
1

Δt σs
2 + σn

2
y(T) = Χ2(M).

The probabilities of detection and false alarm are

pfa = 
χpfa

∞

f (x,M)x, pd = 
χpd

∞

f (x,M)x

where f (x, M) denotes the probability density function of a chi-squared random variable with M degrees 

of freedom:
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f (x,M) =
xM/2-1 e-x/2

Γ(M /2) 2r/2
, 0 ≤ x < ∞, and

The threshold quantities χpfa and χpd are defined by

χpfa =
K

Δtσn
2
, χpd =

K

Δt σs
2 + σn

2

If we eliminate K /Δt from the equations defining the quantities χpfa and χpd, then we obtain

σs
2

σn
2
=

χpfa

χpd
- 1.

The quantity σs
2 σn

2
 is a measure of signal to noise ratio (SNR). The detection threshold DT for the 

energy detector is defined to be

DT = 10 log10
χpfa

χpd
- 1 .

Detection threshold is the amount of SNR required to achieve sonar performance at a specified false 

alarm probability pfa and probability of detection pd.  For instance,  a false alarm probability of 10-4 

requires χpfa = 18.4 and a probability of detection of 0.90 requires χpd = 0.21 . This equates to a detec-

tion threshold of 19.4 dB.  For a fixed value of χpfa, .e. for a fixed false alarm rate, the probability of 

detection is 

pd
σs
2

σn
2

= 
χpfa

1+σs
2σn

2

∞

f (x,M)x.

3.3 Signal with unknown phase

In this section we will examine the detection of a sinusoidal signal of known amplitude but unknown 

phase. We will find that the performance metrics for the detection of this signal are very similar to the 

case in which the form of the signal is completely known to the receiver.  The optimal detector for a 

signal of known amplitude and frequency but unknown phase in a background of white noise is the 

envelope detector (Blake 1991). If  is

x(t) = a cos(ω t + ϕ) + n(t)

is the signal plus noise in the receiver channel where n(t) is white noise, then the optimal detection 

statistic  is to compute the signal envelope

y(T) = 
0

T
x(t) cos(ω t) t

2
+ 

0

T
x(t) sin(ω t) t

2

1/2
.

In the absence of signal the test statistic  y is Rayleigh distributed with probability density function

f (y) =
y

N
exp -

y2

2N
,

where N = BN0 is the noise power in the receiver band, B is the receiver bandwidth and N0 is the noise 
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spectral density in the receiver band. If the signal is present, then the test statistic  y is Rician dis-
tributed with probability density function

f (y) =
y

N
exp -

y2 + a2

2N
I0
a y

N
,

where I0(x) is the zero order modified Bessel function   For a fixed threshold K, the probability of false 

alarm is

pfa = 
K

∞ y

N
exp -

y2

2N
y = exp -

zpfa2

2
, zpfa =

K

N
.

The probability of detection is

pd = 
K

∞ y

N
exp -

y2 + a2

2N
I0
a y

N
y.

If we observe that the root mean squared signal power in the receiver band is S = a2 2 denote signal 

power in the receiver band, then the probability of detection at signal to noise ratio S /N and false alarm 

rate pfa is

pd
S

N
= 

k

∞ y

N
exp -

t2 + 2 S /N

2
I0 2 S /N t y, k = -2 log(pfa) .

The performance of the three different signal detection models is illustrated  in figure x. The false alarm 

probability is 10-6.  Case 1 is detection of a known signal with a matched filter..  Case 2 is detection of a 

signal of unknown phase with an envelope detector.  Case 3 is a detection of a noise-like signal with an 

energy detector.  The time-bandwidth product of the noise-like signal is assumed to be unity. In all 
cases the background noise is assumed to be white. The performance of the matched filter and the 

envelope detector are very similar.
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Fig 3.1. Effect of signal to noise ratio on probability of detection for three different signal models. Case 

1: signal known exactly.  Case2: signal of unknown phase. Case 3: Noise-like signal. In each case an 

optimal test statistic  has been used. Time-bandwidth product for the noise-like signal is unity.
pd 0.5 0.5 0.9 0.9
pfa 10-4 10-6 10-4 10-6
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Known exactly 8.4 10.5 11.0 12.6
Unknownphase 9.4 11.3 11.7 13.2

Noise like 10.9 12.8 19.4 21.1

 Table  3.1 Detection thresholds (dB) for three different signal models.

3.4 Odds of sonar success

Odds provide a commonly used, convenient metric for reasoning about stochastic events. If the proba-
bility of event E is p, then the odds favoring E are:

O =
p

1 - p
.

The event we are most interested in is successful performance of the sonar. Consider the two mutually 

exclusive and exhaustive hypotheses, 
H0: no target is present
H1: target present,

and two mutually exclusive and exhaustive decisions,
D0: say no target present
D1: say  target present

then there are four possibilities, 
c00: D0H0 correct call, no target 
c10: D1H0 false alarm
c11: D1H1 correct call, detection
c01: D0H1 false dismissal.

Following this notational practice, call the probability of event c00, p00.

The event we seek to evaluate is correct sonar operation (S=success), {c00, c11} in relation to incorrect 
sonar operation (F=failure), {c01, c10}. The odds of sonar success are then

Oss =
P(S)

P(F)
= (P(S H0)P(H0) + P(S H1)P(H1)) / (P(F H1)P(H1) + P(F H0)P(H0)).

If the two hypotheses H0 and H1 are equally likely, then P(H0) = P(H1), and the odds of sonar success are

Oss =
P(S)

P(F)
=
P(S H0) + P(S H1)

P(F H1) + P(F H0)
=
p00 + p11

p01 + p10
.

Traditionally  we specify sonar performance in terms of probability of detection, p11 = pd, and probabil-
ity of false alarm p10 = pfa. This means we can re-write the terms

Probability of correct no target: p00 = 1 - pfa,
Probability of false dismissal: p01 = 1 - pd,

and re-write the odds as,

Oss =
1 - pfa + pd

1 + pfa - pd
.

For the case of the matched filter operating at a prescribed false alarm probability pfa, the odds of 

Computation of Sonar Performance Metrics Part 1.nb     19



sonar success are

Oss =
1 - pfa + Φ

2 E
N0

- zpfa

1 + pfa - Φ
2 E
N0

- zpfa

.

where E and N0 are respectively the signal energy and interference spectral density at the input to the 

pre-detector filter,  Φ(y) is the cumulative distribution function of a standard Gaussian random variable, 
and zpfa  is the solution to the transcendental  equation pfa =Φ-zpfa.

The odds on a logarithmic scale of the three different signal detection models are illustrated  in figure 

3.2. The false alarm probability is 10-6. Case 1 is detection of a known signal with a matched filter.  Case 

2 is detection of a signal of unknown phase with an envelope detector.  Case 3 is a detection of a noise-
like signal with an energy detector.  The time-bandwidth product of the noise-like signal is assumed to 

be unity.  In all cases the background noise is assumed to be white.  The performance of the matched 

filter and the envelope detector are very similar.
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Fig 3.2.Effect of signal to noise ratio on sonar performance odds for three different signal models. The 

hypotheses H0 and H1 have been assumed to be equally likely. Case 1: signal known exactly.  Case 2: 
signal of unknown phase. Case 3: Noise-like signal. In each case an optimal test statistic  has been used. 
Time-bandwidth product for the noise-like signal is unity.

In a search scenario the two hypotheses H0 and H1 do not have equal probabilities. It is much more 

likely that the target is not present, i.e., P(H0) >> P (H1). If we define the prior odds ratio to be

Oprior = P(H0) /P(H1),

then Oprior will be a large positive number, perhaps on the order of 104 or more, and the odds of sonar 

success are

Oss =
P(S)

P(F)
=
P(S H0)Oprior + P(S H1)

P(F H1) + P(F H0)Oprior
=
(1 - pfa)Oprior + pd

(1 - pd) + pfa Oprior
,
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pd = Φ
2 E

N0
- zpfa .

This last equation shows that if Oprior is large,  that is if a target is unlikely to be present, then the odds 

of sonar success Oss are largely determined by pfa and are insensitive to the signal-to-noise ratio E /N0. A 

plot of the odds of sonar performance Oss for the matched filter at different values of the prior odds 

ratio Oprior = P(H0) /P(H1) is shown in figure 3.3.  When the prior odds ratio is small, the results are very 

sensitive to SNR.
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Fig 3.3. Sonar performance odds as a function of SNR for the matched filter at different values of the 

prior odds ratio.

In[ ]:=

3.5Computations of figures 3.1 - 3.3

In[ ]:= Figure 3.1

Clear definitions:

In[ ]:= Clear[PdMatchedFilter, PdEnvelopeDetector, PdEnergyDetector];

Probability of detection for a matched filter:

In[ ]:= PdMatchedFilter[SNRdB_, Pfa_] := Block{zpfa, x, snr},

zpfa = x /. FindRoot[CDF[NormalDistribution[0, 1], x]  1.0 - Pfa, {x, 4}] ;
snr = 10SNRdB/10;

1 - CDFNormalDistribution[0, 1], zpfa - 2 snr 

Probability of detection for an envelope detector:
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In[ ]:= PdEnvelopeDetector[SNRdB_, Pfa_] :=

Module{a, Threshold},

a = 10SNRdB/20.0;

Threshold = (-2 Log[Pfa]) ;

NIntegrate

T * Exp
-T2 + 2 a2

2
 BesselI0, 2 a * T, {T, Threshold, 10 * Threshold}



Probability of detection for an energy detector:

In[ ]:= PdEnergyDetector[SNRdB_, Pfa_, MDOF_] := Module{Xpfa, x, snr},

Xpfa = x /. FindRoot[CDF[ChiSquareDistribution[MDOF], x]  1.0 - Pfa, {x, 18}] ;
snr = 10SNRdB/10;

1 - CDFChiSquareDistribution[MDOF],
Xpfa

1 + snr


Computation of figure 3.1:

In[ ]:= Pfa = 10-6; MDOF = 2;

Plot{PdMatchedFilter[SNRdB, Pfa], PdEnvelopeDetector[SNRdB, Pfa],

PdEnergyDetector[SNRdB, Pfa, MDOF]}, {SNRdB, 0, 25}, 

Out[ ]=
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1: matched filter

2: envelope detector

3: energy detector

In[ ]:= Figure 3.2

Computation of figure 3.2:
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In[ ]:= Pfa = 10-6; MDOF = 2;

Plot{

Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, (1 - Pfa + Pd) / (1 + Pfa - Pd)],
Pd = PdEnvelopeDetector[SNRdB, Pfa];
Log[10, (1 - Pfa + Pd) / (1 + Pfa - Pd)],
Pd = PdEnergyDetector[SNRdB, Pfa, MDOF];
Log[10, (1 - Pfa + Pd) / (1 + Pfa - Pd)]

}, {SNRdB, 0, 24}, 

Out[ ]=
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1: matched filter

2: envelope detector

3: energy detector

In[ ]:= Figure 3.3

Computation of figure 3.3:
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In[ ]:= Pfa = 10-6;

Plot{

Oprior = 0.0001;
Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, ((1 - Pfa) Oprior + Pd) / ((1 - Pd) + Pfa * Oprior)],
Oprior = 0.01;
Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, ((1 - Pfa) Oprior + Pd) / ((1 - Pd) + Pfa * Oprior)],
Oprior = 1;
Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, ((1 - Pfa) Oprior + Pd) / ((1 - Pd) + Pfa * Oprior)],
Oprior = 100;
Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, ((1 - Pfa) Oprior + Pd) / ((1 - Pd) + Pfa * Oprior)],
Oprior = 10000;
Pd = PdMatchedFilter[SNRdB, Pfa];
Log[10, ((1 - Pfa) Oprior + Pd) / ((1 - Pd) + Pfa * Oprior)]

},

{SNRdB, 0, 25}, 

Out[ ]=
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