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Introduction

Discussion.	 	In	December	of	2015	it	was	experimentally	observed	that	the	LLG	radar	could	make	an	accurate	measurement	
of	the	dependence	of	received	background	noise	energy	as	a	function	of	radar	tilt	angle.		This	measurement	closely	agreed	
with	a	theoretical	calculation	of	this	quantity	using	a	standard	atmosphere.	 	This	experiment	was	successfully	repeated	on	
the	9th	of	December	with	the	radar	operating	both	in	active	and	passive	mode.		This	immediately	suggests	that	the	radar	can	
be	used	 to	measure	 the	 variation	of	 temperature	 as	 a	 function	of	 altitude	 in	 addition	 to	measuring	wind	 velocity.	 	 That	
portion	of	the	noise	energy	budget	that	the	radar	receives	from	the	troposphere	and	beyond	is	referred	to	as	the	brightness	
temperature	 (Tbright).	 	 The	 relationship	 between	 Tbright	 and	 the	 vertical	 profile	 of	 temperature	 in	 the	 atmosphere	 T(z)	 is	
described	 by	 the	 equation	 shown	 to	 the	 right.	 In	 this	 equation	 αν(z)	 denotes	 absorption	 at	 frequency	 ν.	 Although	 not	
indicated	 here,	 absorption	 depends	 upon	 temperature,	 pressure	 and	 moisture.	 	 	 The	 figure	 above	 shows	 how	 the	
environmentally	dependent	portion	of	this	relationship	varies	with	altitude	and	frequency.	 	 	The	yellow	line	shows	the	99th	
percentile	of	received	energy	as	a	function	of	frequency.	Figure	generated	by	“Fast	Tropospheric	Noise	Temperature.	nb”.
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Sky	noise	observed	on	7	December	2015

Discussion.	 	 Measured	 sky	 noise	 values	 made	
with	the	LLG-QNA	radar	on	7	December	2015	at	
the	 Stennis	 International	 Airport.	 	 Data	 were	
collected	from	1658	to	2103	Z.		Sky	noise	is	noise	
observed	 by	 the	 radar	 that	 comes	 from	 the	
troposphere	 (0-47	 km)	 and	 the	 cosmos	 (beyond	
47	km	for	ordinary	radar	frequencies).			The	range	
of	 radar	 elevation	 angles	 in	 the	 figure	 is	 25-90	
degrees	 with	 90	 degrees	 corresponding	 to	 the	
vertical	 (radar	 looking	straight	up).	 	At	33.4	GHz	
the	cosmos	contribution	to	sky	noise	is	2.5	deg	K	
and	is	very	nearly	independent	of	elevation	angle	
over	 the	 range	25-90	deg.	Thus	sky	noise	 in	 this	
case	 is	 effectively	 tropospheric	 noise.	 	 	 Smaller	
points	 in	 the	 plot	 indicate	 individual	 radar	 sky	
noise	measurements.	 	Larger	gray	points	indicate	
mean	 values.	 	 Estimations	 of	 the	 sky	 noise	
temperature	 using	 algorithms	 from	Blake	 (1991)	
are	shown	for	reference	via	the	dashed	black	line.		
Computations	with	 the	 Blake	 algorithms	 for	 the	
sky	noise	temperature	have	been	made	using	on	
s c ene	 measu rement s	 o f	 a tmosphe r i c	
temperature	 and	 pressure.	 	 Sky	 noise	
temperature	 is	 lowest	 near	 the	 vertical	 because	
at	these	angles	the	radar	beam	trajectory	spends	
the	 least	amount	of	 time	 in	 the	denser	portions	
of	 the	 atmosphere	 which	 occur	 at	 lower	
altitudes.	 	The	data	in	the	figure	indicate	a	radar	
total	 system	 noise	 temperature	 of	 130	 deg	 K	 at	
an	 elevation	 angle	 of	 90	 degrees.	 	 It	 had	
previously	been	estimated	that	the	radar	system	
noise	temperature	was	300	deg	K.	 	However	this	
data-model	comparison	provides	a	more	accurate	
radar	 calibration	 than	 previous	 estimates	 based	
only	upon	system	parameters.	Figured	generated	
using	 “Radar	 Vertical	 Tilt	 Data	 Analysis	 7	
December	2015.nb”.

http://demonstrations.wolfram.com/NoiseTemperatureOfARadarSystem/



Side	by	side
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Time	variation	of	sky	noise	()observed	on	7	December	2015

Discussion.	This	figure	indicates	that	the	
LLG	 radar	 can	 track	 temperature	 trends	
in	 the	 atmosphere	 over	 the	 course	 of	
hours	 and	 across	 multiple	 tilt	 angles.			
Sky	 noise	 is	 also	 referred	 to	 as	
brightness	 temperature	 in	 this	 brief.		
Figure	 generated	 using	 “Radar	 Vertical	
Tilt	Data	Analysis	7	December	2015”.



Time	variation	of	noise	floor	LLNL	on	18-20	February	2015

Discussion.	 This	 	 figure	 indicates	 that	
the	 LLG	 radar	 can	 track	 temperature	
trends	 in	 the	 atmosphere	 over	 the	
course	of	days	and	observe	correlations	
with	 solar	 activity.	 	 The	 figure	 also	
indicates	 there	are	effects	 in	play	other	
than	 solar	 activity	 also.	 	 Figure	
generated	using	“Solar	Effects	Lawrence	
Livermore	2015.nb”.	



		Visualizing	the	construction	of	a	cubic	spline

Discussion.	 	 The	 construction	 of	 a	 cubic	 spline	
representation	 for	 a	 function	 f(x)	 begins	 with	
representing	 the	 second	 derivative	 of	 f(x)	 as	 a	
piecewise	 continuous	 linear	 function.	 	 In	 the	
figure	shown	to	the	left	the	values	of	the	second	
derivative	of	f(x)	at	the	lattice	 	points	xj,	j=1,2,..,N	
are	denoted	by	mj	with	hj+1	defined	to	be	hj+1=xj+1-
xj.	 	The	second	derivative	of	 this	 function	on	the	
interval	xj≤x≤xj+1+1	is	

  

ʹʹSj (x) = mj +
mj+1 −mj
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(x − xj )
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In	 writing	 the	 preceding	 equation	we	 have	 used	
S(x)	 is	 an	 alternative	 name	 for	 f(x).	 	 Integrating	
d2S(x)/dx2	twice	yields	a	cubic	polynomial	that	has	
global	 curvature	 on	 the	 interval	 (x1,xN)	 that	 is	
smaller	 than	 any	 other	 twice	 continuously	
differential	 function	on	 this	 interval.	 	 The	 results	
of	these	two	integrations	are	shown	in	the	 lower	
figure	to	the	left.	The	points	(xj,	fj)	are	referred	to	
as	 the	 control	 points	 (or	 the	pivot	points)	 of	 the	
spline.	 Concept	 adapted	 from	 von	 der	 Linden	
(2014).	 	 Figures	 generated	 by	 “Spline	 Global	
Smoothness	Figures.nb”.

Reference:	Adapted	from	von	der	Linden,	W.,	Dose,	V.	and	von	Toussaint,	U.	(2014),	
Bayesian	Probability	Theory:	Applications	for	the	Physical	Sciences,	(Cambridge:	
Cambridge	University	Press).



Analytic	representation	of	a	cubic	spline
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Discussion.	 Integrating	 the	 second	 derivative	 of	 S(x)	 twice	 and	
application	of	the	requirement	that	S(x)	must	pass	through	the	points	
(xj,fj)	 and	 (xj+1,fj+1)	 for	 j=2,3,…,N-1	 leads	 to	 the	 representation	of	 the	
cubic	spline	S(x)	shown	in	the	equation	above.	At	this	point	we	know	
the	pivot	abscissas	xj	and	the	their	spacings	hj.		The	values	of	the	pivot	
ordinates	fj	and	their	second	derivatives	mj	are	unknown.	 	Continuity	
of	the	first	derivative	of	S(x)	at	the	points	(xj,fj)	for	j=2,3,…,N-1	supplies	
N-2	equations.	 	The	requirement	that	the	second	derivative	of	S(x)	 is	
zero	at	x1	and	xN	 leads	to	the	equations	shown	to	the	left	and	above	
and	produces	a	 form	of	spline	 that	 is	 referred	 to	as	a	natural	 spline.		
Natural	 splines	 are	 terminated	 at	 inflection	 points.	 	 The	 rather	
formidable	 collection	 of	 equations	 shown	 to	 the	 right	 express	 the	
second	derivatives	of	S(x)	 in	 terms	of	 the	known	 functional	 values	 fj	
and	the	pivot	point	abscissas	xj	together	with	their	spacings	hj.		At	this	
point	the	only	unknowns	are	the	pivot	point	ordinates	fj.	 	They	must	
be	found	from	data	or	other	information.
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Note.		The	symbols	x	and	f	in	the	above	equations	will	
respectively	correspond	to	altitude	and	atmospheric	
temperature	elsewhere	in	this	presentation.

Reference:	Adapted	from	von	der	Linden,	W.,	Dose,	V.	and	von	Toussaint,	U.	(2014),	
Bayesian	Probability	Theory:	Applications	for	the	Physical	Sciences,	(Cambridge:	
Cambridge	University	Press).



Forward	model	of	radiative	transfer

Discussion.	 In	 order	 to	 begin	 the	 process	 of	 estimating	 the	
atmospheric	 vertical	 temperature	 profile	 from	 observed	 radar	
brightness	temperatures	we	first	must	mathematically	relate	these	
quantities	via	a	form	that	lends	itself	to	numeric	computation.	 	To	
this	end	we	represent	the	atmospheric	temperature	profile	T(z)	via	
a	cubic	spline.	 	 In	terms	of	the	preceding	discussion	x	 represents	
and	altitude	and	 f	 represents	 temperature.	 	 	 	 The	 first	 thing	we	
must	 do	 is	 choose	 a	 set	 of	 pivot	 point	 abscissas	 (x1,x2,…xN)	 such	
the	 	 first	 abscissa	 correspond	 to	 the	 ground	 (x=0)and	 the	 last	
abscissa	corresponds	to	an	altitude	above	which	there	is	negligible	
contribution	 to	 the	 radar	 brightness	 temperature	 from	 the	
atmosphere.		If	we	repeat	this	process	for	each	frequency	(or	radar	
tilt	angle)	for	which	data	has	been	collected,	the	result	is	a	matrix	
equation	 relating	 the	 observed	 brightness	 temperatures	 to	 the	
unknown	pivot	point	ordinates:	y=Af.	 	 The	matrix	A	 is	 known	as	
the	forward	matrix.		It	relates	the	atmospheric	temperatures	in	the	
vector	 	 f	 that	 we	 would	 like	 to	 know	 to	 the	 brightness	
temperatures	y	that	we	have	measured.	 	A	very	naïve	thing	to	do	
at	this	point	would	be	to	make	an	estimate	of	the	unknown	vector	
f	 using	 the	 familiar	 least	 squares	 solution	 f(LS)=(ATA)-1ATy.	 	 The	
problem	 here	 is	 that	 the	matrix	ATA	 is	 very	 ill	 conditioned	 with	
numerous	 small	 eigenvalues	 and	 only	 a	 few	 eigenvalues	 (if	 any)	
that	are	significantly	different	from	zero.	 	The	solution	that	results	
from	the	naïve	 least	squares	approach	will	bear	no	semblance	to	
reality,	even	in	the	absence	of	of	measurement	noise.	 It	 is	at	this	
point	 that	 a	 Bayesian	 approach	 which	 incorporates	 prior	
knowledge	 about	 the	 atmospheric	 temperature	 profile	 becomes	
vital.	 	 	 In	 fact	 it	 is	 only	 in	 a	Bayesian	 context	 that	 solutions	 to	 a	
problem	like	this	make	any	sense	at	all.
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Likelihood	of	data	and	posterior	distribution	of	pivots

Discussion.	 The	 likelihood	 of	 obtaining	 the	 measured	 brightness	
temperature	data	y	given	the	forward	matirix	A	 	and	the	values	of	
the	pivot	point	ordinates	f	on	initial	information	I	is	given	by	the	top	
equation	shown	to	the	right.	The	pivot	abscissas	x	are	taken	to	part	
of	 the	 initial	 information	 I.	 	 In	 the	 experimental	 examples	 that	
follow,	measurement	errors	will	be	assumed	to	be	uncorrelated	and	
the	measurement	error	covariance	matrix	Cσ	will	be	assumed	to	be	
diagonal	with	diagonal	elements	σi,	i,1,2,…,Nd.	 	We	will	additionally	
assume	that	these	diagonal	elements	are	identical	with	value	4	deg	
K.	 	On	initial	information	I	 	we	will	assume	that	the	initial	values	of	
the	 	 pivot	ordinates	 follow	an	Nd	 dimensional	normal	distribution	
with	 mean	 fa	 	 given	 in	 accordance	 with	 the	 Blake	 standard	
atmosphere	 and	 with	 uncertainty	 measured	 by	 the	 covariance	
matrix	 Sa	 shown	 to	 the	 right	 (Rogers,	 2012).	 	 In	 the	 	 equation	
defining	the	covariance	matrix	values,	 	δx	 is	a	length	scale	that	we	
take	to	be	the	distance	between	the	first	two	pivot	point	abscissas	
and	hcor=-δx/logβ	 is	 a	 correlation	distance.	 	 In	 this	matrix	 β=0.95.		
According	 to	 Rodger,s	 this	 choice	 of	 parameters	 provides	 some	
modeling	of	 the	 inner	 level	 correlations	 that	probably	 exist	 in	 the	
atmosphere.		

	Bayes	theorem	tells	us	that	the	posterior	distribution	of	the	pivot	
points	 f	 in	 light	 of	 the	 measured	 data	 is	 given	 by	 the	 fourth	
equation	 shown	 to	 the	 right.	 	 In	 this	 equation	 Zconst	 is	 a	
normalization	 constant.	 	 In	 order	 to	make	 computations	 tractable	
we	 will	 assume	 that	 our	 measurement	 errors	 and	 our	 prior	
knowledge	 about	 the	 pivot	 point	 ordinates	 are	 both	 normally	
distributed.	 In	 this	 case	 the	posterior	distribution	p(f|y,A,I)	 is	 also	
normally	 distributed	 and	 we	 can	 obtain	 useful	 information	 about	
the	pivot	point	ordinates	without	 resorting	 to	 intensive	numerical	
computations.	 	Specifically	the	mean	fmean	and	covariance	Cf	of	the	
posterior	distribution	of	f	are	given	by	the	last	of	the	two	equations	
shown	to	the	right.
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Reference:	Rogers,	C.D.	(2004),	Inverse	Methods	for	Atmospheric	Sounding:	
Theory	and	Practice	(Hackensack:	World	Scientific	Publishing).	



Obtaining	a	solution	through	a	process	of	iteration

Discussion.	 The	 technique	 for	 obtaining	 a	 solution	 for	
the	 temperature	 pivot	 ordinates	 f	 described	 in	 the	
previous	slide	produces	an	initial	estimate	f1		In	order	to	
obtain	 a	 final	 estimate,	 an	 iterative	 procedure	 of	
refinement	must	be	used.	 	 	 	 This	 results	 from	 the	 fact	
that	 absorption	 in	 the	 atmosphere	 depends	 on	
temperature,	 pressure	 and	 water	 vapor	 density.		
Because	 of	 this,	 at	 each	 stage	 of	 the	 refinement	 the	
forward	 matrix	 A	 must	 be	 updated	 using	 the	 new	
temperature	 profile.	 	 This	 essentially	 corresponds	 to	 a	
re-computation	of	 the	data	depicted	 in	 the	color	 figure	
in	 the	 introduction	 slide.	 	Pressure	 is	estimated	 from	a	
standard	gas	law:	p(x)=p0{exp(-[g/(RgasT(x))]x}	where	p(x)	
is	 pressure	 at	 altitude	 x,	 g	 is	 the	 acceleration	 due	 to	
gravity,		T(x)	is	temperature	at	altitude	x	and	Rgas		is	a	gas	
constant	with	value	287	MKs	units.	 In	order	to	 initialize	
the	process,	the	individual	entries	in	the	forward	matrix	
A	 in	 the	 examples	 that	 follow	 were	 computed	 using	
values	of	temperature,	pressure	and	water	vapor	density	
for	 the	 Blake	 (1991)	 standard	 atmosphere.	 Typically	
about	 4-7	 iterations	 of	 this	 procedure	 are	 required	 to	
reach	convergence.		

Test	cases.	We	now	consider	two	test	cases.		The	first	of	
these	is	based	upon	data	reported	by	Westwater	(1965)	
in	Dakar.		Westwater’s	data	were	actually	measured	on	2	
February	 1956.	 	 They	 were	 recorded	 with	 a	 vertically	
oriented	radiometer	operating	over	the	band	45-57	GHz.		
These	data	correspond	to	the	rapidly	changing	region	of	
absorption	shown	in	the	introductory	slide.	 	The	second	
data	 set	 is	 the	 measurements	 made	 on	 7	 December	
2015	 by	 LLG	 at	 33.4	 GHz	 with	 the	 radar	 at	 elevation	
angles	 in	 the	 range	 25-	 90	 deg.	 	 Atmospheric	
temperature	profiles	were	measured	with	a	 radiosonde	
for	both	data	sets.



Test	case	1:	Dakar	2	February	1956

Discussion.	The	gray	squares	in	the	figure	above	are	Westwater’s	data	for	Dakar	on	2	February	1956.		Note	that	the	
variation	of	brightness	temperature	between	45	and	57	GHz	is	approximately	250	deg	K.	Also	shown	in	the	figure	is	the	
forward	computation	of	the	brightness	temperature	using	the	measured	temperature	from	2	February	1956.		Figure	
generated	using	”	Brightness	Temperature	Dakar	Senegal	2	February	1956	Actual	Data.nb”.

Reference:	Westwater,	E.	R.	(1965).	“Ground	Based	Passive	Probing	Using	the	
Microwave	Spectrum	of	Oxygen”,	Radio	Science,	Vol	69D,	September	1965.	



Side	by	side
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Test	case	1	Dakar:	estimated	temperature	profile

Discussion.		The	figure	above	shows	the	Bayes	estimate	of	the	atmospheric	temperature	profile	using	the	2	February	1956	Dakar	brightness	temperature	
data	 for	 the	 52-57	 GHz	 band.	 	 This	 band	 corresponds	 to	 the	 frequency	 range	 where	 absorption	 is	 changing	 most	 quickly.	 	 Seven	 iterations	 were	
performed	as	 indicated	 in	 the	 figure.	 	The	thick	dashed	black	 line	shows	the	spline	curve	 for	 the	7th	 iteration.	 	The	solid	black	 line	 is	 the	radiosonde	
temperature	profile.		The	thin	gray	line	shows	an	extension	of	the	sonde	temperature	profile	into	the	Blake	standard	atmosphere.		Note	that	the	iterative	
solutions	 have	 converged	 and	 that	 Bayes	 procedure	 correctly	 estimates	 the	 on-scene	 measured	 surface	 temperature.	 	 Figure	 generated	 using	 ”	
Brightness	Temperature	Dakar	Senegal	2	February	1956	Actual	Data.nb”.



Test	case	2:	7	December	2015	at	the	Stennis	Airport

Discussion.	 	The	figure	shows	the	Bayes	estimate	of	the	atmospheric	temperature	profile	using	7	December	2015	brightness	temperature	data	for	the	
radar	tilt	angles	in	the	25-90	deg	range.		Seven	iterations	were	performed	as	indicated	in	the	figure.		The	thick	dashed	black	line	shows	the	spline	curve	
for	the	7th	iteration.		The	solid	black	line	is	the	sonde	temperature	profile.		The	thick,	dashed	gray	line	shows	the	Blake	standard	atmosphere.		Note	that	
the	iterative	solutions	have	not	converged	and	that	the	Bayes	procedure	does	not	correctly	estimate	the	on-scene	measured	surface	temperature.	 	The	
reason	 for	 this	 lack	of	 convergence	are	discussed	 in	 the	next	 slide.	 Figure	generated	using	 ”	Brightness	Temperature	Dakar	 Senegal	2	 February	1956	
Actual	Data.nb”.

keeps	going



Information	content	and	degrees	of	freedom

Name	at Description Case	1a Case	1b Case	2

2	Feb	1956	
52-57	GHz

2	Feb	1956	
45-57	GHz

7	Dec	2015	
25-90	deg	at	33.4	GHz

Forward	matrix	A	
eigenvalues

λ1,	λ2,	λ3,	λ4 3.003,	0.1827	
0.008472,	2.204×10-4

3.098,	0.2170	
0.01037,	2.653×10-4

0.0131,	3.35439×10-7	
1.4700×10-12,	2.6930×10-18

Degrees	of	freedom	
(ds)

trace(Aavg) 0.9517 0.9750 0.0534

Information	
content	(H)

-1⁄2log|INd-Aavg| 1.12949 1.17369 0.02745

Recognizable	
atmospheric	states

2H 2.28 2.26 1.02

Iterative	solution	
convergence

Yes Yes No

Measures	correct	
ground	temp

Yes Yes No

Discussion.	 	As	indicated	in	the	table	shown	above,	there	is	significantly	more	information	content	in	the	Dakar	1956	data	than	
in	 the	 7	December	 2015	 data.	 	 It	 is	 the	 lack	 of	 information	 content	 in	 the	 2015	 data	 that	 leads	 to	 non	 convergence	 in	 the	
temperature	estimation	procedure.	Also	note	that	including	the	45-52	Mhz	data	in	the	temperature	estimate	at	the	Dakar	site	
does	not	improve	the	estimate.		All	of	the	useful	information	is	in	the	52-57	GHz	band.	The	matrix	Aavg	shown	in	the	above	table	
is	the	averaging	kernel	matrix	and	is	defined	to	be	Aavg=(ATSσ-1A+Sa-1)-1ATSσ-1A.	Table	generated	using	”	Brightness	Temperature	
Dakar	Senegal	2	February	1956	Actual	Data.nb”.

Reference:	Rogers,	C.D.	(2004),	Inverse	Methods	for	Atmospheric	Sounding:	
Theory	and	Practice	(Hackensack:	World	Scientific	Publishing).	



Conclusions

• The	LLG	radar	can	clearly	track	atmospheric	temperature	trends	related	to	the	radar	receive	brightness	
temperature	(also	called	sky	noise).		Time	scales	at	which	the	radar	tracks	changes	span	from	hour	to	days.		
The	shape	of	the	radar	receive	brightness	temperature	as	a	function	of	radar	elevation	angle	can	be	used	to	
accurately		calibrate	the	radar	for	the	first	time.	

• A	Bayesian	procedure	for	estimating	the	atmospheric	vertical	temperature	profile	T(z)	from	radar	brightness	
temperature	measurements	at	different	elevation	angles	and	operating	frequencies	has	been	developed.		
This	procedure	incorporates	prior	information	about	the	environment	and	radar	and	combines	it	with	
brightness	temperature	data	measured	by	the	radar	to	produce	sensible	estimates	of	T(z).		The	procedure	
also	provides	a	computationally	correct	tool		to	support	sophisticated	radar	design	studies.		

• The	angular	spectrum	of	the	atmospheric	brightness	temperature	at	33.4	GHz	does	not	appear	to	have	
enough	information	content	to	allow	the	recovery	of	the	atmospheric	vertical	temperature	profile.	This	may	
not	be	the	case	at	radar	carrier	frequencies	that	are	located	closer	to		50-60	GHz		where	oxygen	absorption	
is	so	important.	

• Brightness	temperature	data	previously	collected	by	Westwater	(1965)	over	the	frequency	range	45-57	GHz	
has	been	successfully	inverted	to	produce	a	temperature	profile	that	is	in	general	agreement	with	the	on-
scene	temperature	profile	measured	by	a	radiosonde.



Possible	tasks	

• Task	1	:	Yanagisawa	(1979)	observed	using	a	combination	of	8.6	mm	radar	data	and	radiosonde	data	that	
the	onset	of	positive	vertical	heat	vertical	heat	flux	in	the	atmosphere	coincided	with	the	observation	of	
radar	reflections	from	convective	turbulence.			We	know	that	the	LLG	radar	can	measure	the	intensity	of	
reflections	from	clear	air	turbulence	at	a	very	fine	vertical	scale.		As	this	document	shows,	the	radar	has	the	
potential	to	measure	the	vertical	temperature	profile	at	a	coarse	resolution	(1	km).	It	may	be	possible	to	
relate	this	to	changes	in	vertical	heat	flux	by	incorporating	information	about	the	structure	that	the	active	
portion	of	the	radar	detects.		I	do	not	know	how	to	do	this	at	the	present	but	it	is	worth	investigating.	
– Reference:	Yanagisawa,	Z.	(1979)	“Observation	of	Angle	Echoes	by	8.6-mm	radar”,	Meteorology	and	Geophysics,	Vol.	30,	No.	3/4,	November	

1979.	
• Task	2:	Our	radar	can	be	used	to	monitor	a	parameter	known	as	the	the	turbulent	intensity.		It	is	defined	to	

be	the	ratio	of	the	standard	deviation	of	wind	speed	divided	by	the	mean	wind	speed.		Among	other	things	
it	is	a	descriptor	of	the	amount	of	slosh	relative	to	the	mean	wind	speed.		It	is	used	in	the	windmill	industry	
to	predict	destructive	loading	effects	on	windmill	blades.		Detail	on	this	can	be	found	in	Gasch	(2012)	
– Reference:	Gasch,	R.	and	Twele,(2012)	Wind	Power	Plants	(Berlin:	Springer	Verlag).	

• Task	3:	Our	radar	can	be	used	to	constant	in	combination	with	extreme	value	theory	to	forecast	the	waiting	
time	to	any	parameter	that	the	radar	measures.		An	obvious	example	here	is	wind	gusts	or	bursts	of	
abnormally	high	turbulent	intensity.		I	have	previously	demonstrate	how	this	can	be	done.		A	description	can	
be	found	at	the	following:	
– 	http://demonstrations.wolfram.com/ExtremeValueForecasting/	

• Task	4.	Use	the	the	brightness	temperature	that	the	radar	observes	in	a	change	detection	mode	with	the	
process	initialized	with	a	radiosonde	launch.

http://demonstrations.wolfram.com/ExtremeValueForecasting/

